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I. INTRODUCTION 
Aromatic compounds have been the subject of quan- 

tum-mechanical studies for the last 40 years. A main 
emphasis in these studies was to provide classification 
of the electronic spectra. At the very beginning of the 
quantum theory of molecules we find Huckel’s’ applica- 
tion to the benzene ring, hfulliken’s very similar treat- 
ment,2 and later Lennard-Jones3 and Coulson’s work4 
and that of Wheland5 and otherse6 The early treat- 
ments are characterized by complete neglect of the r 
electrons and by neglect of explicit computation, ac- 
curate or approximated, of the electron-electron inter- 
action. Nayer and Sklar7 set about a much more re- 
fined work whereby the electron-electron interaction 
was explicitly computed for the T electrons. The work 

(1) See, for example, J. D. Roberts, “Notes on Molecular Orbital 
Calculations,” W. A. Benjamin, Inc., New York, N. Y., 1961; A. 
Streitwieser, Jr., “Molecular Orbital Theory for Organic Chemists,” 
John Wiley and Sons, Inc., New York, N.  Y., 1961. The original 
work was by E. Htlckel, 2. Physik, 70, 204 (1931); 72, 310 (1931); 
76, 628 (1932). 

(2) R. S. Mulliken, C. Rieke, arid S. Brown, J .  Am. Chem. Soc., 
63, 41 (1941); R.  S. Mulliken, J .  Chim. Phus., 46,497, 695 (1949). 

(3) J. E .  Lennard-Jones, Proc. Roy. SOC. (London), A158, 280 
(1937). 

(4) (a) C. A. Coulson, ib id . ,  A169, 413 (1939); C. A. Coulson and 
H. C .  Longuet-Higgins, ibid. ,  A191,39(1947); A193,16 (1947); A193, 
447, 456 (1948) : A195, 188 (1948) ; (b) H. C. Longuet-Higgins, “Ad- 
vances in Chemical Physics,” Vol. I, I. Prigogine, Ed., Interscience Pub- 
lishers, New York, N. Y., 1958. 

(5)  G. W. Wheland, J .  Am. Chem. SOC., 63, 2025 (1941). 
(6) R.  Daudel, chapter in ref 4b; E. Cartmell and G. W. A. Fowles, 

“Valency and -Molecular Structure,” Butterworth and Co., Ltd. ,  
London, 1956; C. A. Coulson, “Valence,” Clarendon Press, Oxford, 
1959; IT. Kautzmann, “Quantum Chemistry,” Academic Press Inc., 
New York, N .  Y., 1957; J. A. A. Ketelaar, “Chemical Constitution,” 
Elsevier Publishing Co., Amsterdam, 1958; R. G. Parr, “Quantum 
Theory of Molecular Electronic Structure,” W. A. Benjamin, Inc.. 
New York, N. Y.,  1963; M .  J. S. Dewar, Rev. Mod. Phys., 35, 586 
(1963). 

(7) M .  G. Mayer and A. L. Sklar. J .  Chem. Phys., 6, 645 (1938). 
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of Mayer and Sklar was a significant improvement and 
had enormous impact on the field of quantum-mechani- 
cal computation of molecules. It was the first attempt 
to obtain quantitative information from quantitative 
computations of electron-electron integrals in a large 
molecule. The validity of the assumption of a rather 
rigid separation between the c and the T electrons was 
discussed by Altmann,* but after that many workers es- 
sentially ignored any further study of the problem. A 
semiempirical version of Mayer and Sklar’s work was 
proposed by Pariser and Parrg in what is now known as 
the Pariser and Parr approximation. The latter made 
feasible a large number of computations for molecules 
even more complicated than benzene. The main 
emphasis of the Pariser-Parr and Pople theory (or 
P-P-P theory as later it was baptized in view of parallel 
work by Pople’O) was to elucidate the electronic spectra. 
Since the u electrons were approximated and since part 
of the two-electron integrals for the T electrons were 
neglected or approximated, the P-P-P technique had to 
recur to semiempirical parameters obtained from 
spectra data. 

The theory works formally within the one-electron 
approximation and had to explain spectral transition, a 
problem inherently connected with the correlation 
energy. ilt that time quantum chemists had not de- 
veloped a quantitative appreciation for the magnitude 
of the correlation energy and, therefore, the problem of 
spectral transition prediction .#as remarkably difficult, 
since the same set of data was capable of fitting a few 

(8) S. L. Altmann, Proc. Roy .  SOC. (London), A210, 327, 343 
(1951). 

(9) R.  Pariser and R. G. Parr,  J .  Chem. Phys., 21, 466 (1953); 23, 
711 (1955). 

(10) J . A .  Pople, Proc. Phys. SOC. (London), A68, 81 (1954). 
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states well, but was much less satisfactory for other 
states within a given molecular system. In  addition, 
the problem of transferring empirical parameters from 
molecule to molecule was considerably difficult. By 
its own nature such type of research can only be ex- 
tremely time consuming since, at  least in principle, each 
set of new empirical parameters had to be as consistent 
as possible with previous parameters. This careful 
analysis was speeded up by experimentation with com- 
puters, and a very large number of molecules were 
analyzed. To some degree this type of work is con- 
tinued today. Personally, this work is a monument 
to the ingenuity of the users, who often were able to 
obtain spectral assignments with a method which in- 
herently should be rather incapable of doing so. It is 
also worthwhile to note that more often than not the 
goal of the work was to predict new spectra or to pro- 
vide theoretical help into the interpretation and classij’i- 
cation of the spectra. The goal of explaining and of un- 
derstanding was less prominent. A series of papers 
which summarize and systematize the ?r-electron ap- 
proach was presented by Rudenberg.” Rudenberg, in 
collaboration with Platt,12 attempted to use a very 
simple model for explaining aromatic spectra; the 
model is the one useful for free electrons in a given 
potential. 

Much of this work, however, is of historical im- 
portance and represents the extent of quantum chemis- 
try hope in the existence of a simple shortcut whereby 
simple calculations and far-reaching simplifying as- 
sumptions could lead to permanent or so solution of the 
very complicated theory of the electronic interaction in 
a molecular field. However, it might very well turn 
out that the simplest and quickest way to understand 
aromatic molecules lies in extending to molecules those 
techniques we know are successful in atoms. This ap- 
proach is much less glamorous among colleagues in 
chemistry; it sounds hard and unyielding. Yet, either 
we seek a quantum-mechanical answer or not. If yes, 
then we had better use quantum mechanics, however 
expensive and tedious it might be. If not, i.e., if we 
think we presently understand the basic theory of 
chemistry, then why bother a t  all with quantum 
chemistry. And if assumptions are to be made and if 
semiempirical theory is to be used, then their full impli- 
cations should be understood. (Parenthetically, I would 
like to note that I have no doubt of the importance in 
developing new assumptions and new semiempirical 
attempts.) 

In  the following section the present status of molecu- 
lar computations is summarized. No attempt is made 
to present a full survey; emphasis on only one ap- 

proach is made, the one in which I think we can make 
significant progress. 

11. MOLECULAR ORBITAL METHOD AND ITS 
DIRECT EXTENSIONS 

A. INTRODUCTION 

In  the last decades two approaches have been 
prominent in the study of the electronic structure of 
molecules, namely the valence-bond approximation 
and the molecular orbital approximation. Other tech- 
niques have been proposed. Of special interest are 
those computational techniques, which can be applied 
to molecular systems with few electrons. For example, 
Kolos and W~lniewicz’~ have obtained very accurate 
wave functions for a number of electronic states in the 
Hz molecule at  many internuclear distances. Kolos’ 
computer program can definitely not only supplement 
but can compete with most sophisticated spectrographs. 
The resolution of his program is within fractions of a 
wavenumber, and the use of the program presents so 
little difficulty that it can be correctly handled by any 
“technician.” The results by Kolos and Wolniewicz 
provide a concrete, although partial, example of what 
one wishes to obtain from theoretical chemistry. How- 
ever, most molecules have more than two electrons and 
exact wave functions are presently not easily obtainable. 
Nevertheless, a number of important steps have been 
made and there is good reason for optimism in the 
future. Some of the steps which have been taken, their 
accomplishments, and limitations will be outlined. 

The valence-bond approximation is progressively 
losing its impact, particularly in theoretical chemistry, 
and somewhat more slowly in chemistry in general. It 
is becoming more and more apparent that any “all- 
electron” treatment of a moderately complex molecule 
is unfeasible even with modern high-speed computers. 
In addition, a full valence-bond treatment which con- 
siders all the electrons of a molecule introduces un- 
reasonable highly positive and negative ions of dubious 
physical meaning. (For example, a valence-bond 
treatment of benzene will use a large number of struc- 
tures, including C+, C2+, C3+, C-,  C2-, C3-, etc.) I ts  
appeal remains in its basic simplicity and in having 
brought about the concept of resonating structures 
which remains a basic concept in theoretical interpreta- 
tions of chemistry. 

The molecular orbital theory has the advantage of 
being conceptually based on atomic theory, with tech- 
niques that can be tested for atoms. An electronic 
theory of molecules should in principle and in practice 
be applicable to the limiting case of a single atom. 
Electrons do not change nature from atoms to molecules 
and the same should hold for any model which describes 

(11) K. Rudenberg, J. Chem. Phys., 34, 391 (1961). 
(12) J. R. Plat t ,  %%id., 17, 484 (1949). 

(13) S. Kolos and L. Wolniewicz, ibid., 41, 3663 (1964); 43, 2429 
(1965). 
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the electronic structure either of atoms or of molecules. 
A pleasant characteristic of the molecular orbital 

theory is that each progressive improvement or step 
has a natural physical explanation. Rather arbitrarily 
we shall present the molecular orbital theory as a five- 
step evolution. 

The first step is the LCAO-JIO approximation. 
There are actually two approximations in the above 
step: the first is the XI0 approximation; the second is 
the LCAO approximation of an 310. As known, the 
short notation LCAO-110 stands for “linear combina- 
tion of atomic orbitals-molecular orbitals.” 

The A 4 0  is a one-electron function which is factored 
into a spatial component and a spin component. The 
expression “one-electron function” means that only the 
coordinates of one electron are explicitly used in a 
given RIO. This factorization into spatial and spin 
components is permissible since generally one uses a 
Hamiltonian which does not explicitly contain spin- 
dependent terms. The h4O’s are the exact analog of 
the atomic orbitals, which describe the electrons in an 
atom to a first approximation. Indeed, one can read 
several chapters of the classical work of Condon and 
Shortly,14 replace the word “AO” with the word “?c40,” 
and read a book on molecular physics instead of atomic 
physics. 

This situation has some important consequences ; 
namely, a large amount of testing and development for 
molecular wave-function techniques can be done with 
atoms. For this reason atomic and molecular examples 
are freely mixed throughout this review. 

If the molecule contains 2n electrons (let us consider 
a closed-shell case for simplicity) , the MO approxima- 
tion will distribute the electrons in 2n molecular orbitals 
pl, p2, . . ., pzn. Since there are two possible spin 
orientations (CY and p spins), a space distribution func- 
tion has either spin CY or and, therefore, the 2n elec- 
tron system is described by n space functions and 2n 
spin orbitals. Thus p1 and p2 will have the same space 
distribution (will depend on the coordinates of one elec- 
tron alone) , but, in accordance with the Pauli exclusion 
principle, will have different spin functions. It is 
stressed that the one-electron model is justified only 
because it simplifies the treatment. Indeed, since the 
very beginning of quantum theory, Hylleraas introduced 
a wave function for the He atom in which one orbital is 
described in terms of the coordinates of both electrons. 

The total wave function * of the 2n electron system 
is then 

1 

where the number in parentheses indicates 8 given elec- 
tron. This determinant wave function guarantees that 
any interchange of two electrons (i and j )  brings about a 
sign change in the wave function. This is the Pauli 
principle constraint for fermions. The energy for such 
a system is given by the relation 

E = (q*jHl\k) 

where the Hamiltonian H is 
17 ” ”  

i o  I i  23 ‘ f j  ab n a b  

The first term is the kinetic operator for the ith elec- 
tron, the second term is the potential operator between 
the ith electron and the ath nucleus (with charge Z,), 
the third term is the electron-electron potential be- 
tween the ith and the j t h  electrons, and finally the last 
term is the nucleus-nucleus potential with Rub the dis- 
tance between the ath and bth nucleus of respective 
charges 2, and 2,. 

The first and second terms are subsequeiitly referred 
to as the one-electron Hamiltonian and will be indicated 
as ho. The total energy for such a determinant was 
given by J. C. Slater, and it is 

E = 2 C h t  + CWii - Kid + ENN (3) 
i i 3  

where 

hf  = (cPi*lhOlPJ (4) 

J t j  = ( C F ~ ( ~ ) * ( P ~ ( ~ ) * / ~ I ~ - ’ I ~ I ( ~ ) ( P ~ ( ~ ) )  ( 5 )  

Ki, = (Pi (1) *(Ps(2) *IT12-q Cpf(2) cp,(l)) (6) 

ENN = ( Z a Z d R a b )  (7) 
ab 

As known, J and K are usually referred to as Coulomb 
and exchange terms, respectively. Equation 7 can be 
rewritten as 

i 

5 CTt + CPij + (9) 
i i>j 

where r1 = h f  + Jrt and pt j  = ( 2 J f j  - K i J .  
What form should the MO have? Clearly, the 

molecular orbitals are subjected to symmetry con- 
straints (as in the case of atomic orbitals) and any 
molecular orbital will transform as an irreducible 
representation of the molecular symmetry group. This 
statement, however, is not a sufficient one; indeed it 
tells us mainly how the molecular orbital should not be. 
In  principle we could insist on the analogy betu7een 
atomic oneelectron functions and molecular one-elec- 
tron functions and “tabulate” the MO in a way analo- 

(14) E. V. Condon and G .  H. Bhortley, “The Theory of Atomic 
Spectra,” University Press. Cambridge, 1957. 
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1 
” = 41 

gous to the method of Hartree and Fock in the 1930’s. 
This would ensure that we have the best possible 
molecular orbitals. It is noted that numerical Har- 
tree-Fock functions for diatomic molecules are a 
somewhat tempting possibility; this, however, has 
not seriously been explored at the present time. 

Nevertheless, chemistry is concerned with more than 
only diatomic molecules. An answer is provided by the 
LCAO approximation, in which the MO’s are built up 
as linear combinations of atomic functions. We 
refer to R. S. Mulliken’s classical series of papers for the 
early development and application of the LCAO-MO 
approximation. 

The second step in the evolution of quantum theory is 
the introduction of self-consistency. Again, the physi- 
cal model is provided by atomic physics, namely by the 
Hartree-Fock model. The LCAO approximation to the 
MO requires the best possible linear combination: this 
is what one intends for self-consistency. A good review 
paper on this subject is the one by Roothaan.Is There 
the self-consistent field technique in the LCAO-MO 
approximation (SCF-LCAO-MO) is systematically ex- 
posed for the closed-shell case. 

Up to now we are strictly in the one-electron ap- 
proximation. The electrons interact among themselves 
only v i a  the average field and the MO has no explicit 
electron-electron parameters. Fortunately, the Pauli 
principle keeps electrons with parallel spin (in different 
h1O’s) away from each other, but it has nothing to offer 
to electrons with antiparallel spin in the same MO. The 
full catastrophe might be appreciated by recalling that, 
in the SCF-LCAO-MO approximation, two fluorine 
atoms are incapable of giving molecular bonding when 
brought together; i.e., the SCF-LCAO-MO does not 
recognize the existence of the FZ molecule.l8 Of course, 
it does not require a computation of Fz to realize this 
point. For example, when the Roothaan work ap- 
peared (1950), another less familiar paper was written 
by Fock17 to a large degree solving the problem and in- 
troducing the concept of two-electron molecular func- 
tions or “geminals,” as they are called today. At the 
same time Lennard-Jones and collaborators1* put for- 
ward a classical series of papers in which part of the 
correlation problem was tentatively solved, but a t  the 
expense of drastic orthogonality restrictions. For a 
variety of reasons, neither of the two avenues was 
numerically explored and in the meantime a third 
possibility slowly emerged. 

Hylleraas,lg and later Boys,20 proposed the possibility 
of using not only one determinant, but as many as 

ls(1) ls(2) ls(3) ls(4) 
G(1) G(2) 523) ii(4) - 
241) 2s(2) 2s(3) 2s(4) - 
Z(1) %(2) %(3) %(4) 

- 

(16) C. C. J. Rootham, Rw. Mod. Phys., 23, 69 (1951). 
(16) A. C. Wahl, J .  Chem. Phys., 41, 2600 (1964). 
(17) V. Fook, Izv. Akad. Nuuk SSSR, Ser. Fiz., 18, 161 (1954). 
(18) A. C. Hurley, J. E. Lennard-Jones, and J. A. Pople, Proc. Roy. 

(19) E.’Hylleraas, 2. Physik., 54, 347 (1929); 65, 759 (1930). 
(20) F. 8. Boys and G. B. Cook, Rev. Mod. Phys., 32,286 (1960). 

SOC. (London), A220, 446 (1953). 

{ ls(1) ii(2)2s(3)%(4) ] 
where the bar designates p spin. 

Let us consider the following functions, *I = { ls(1)- 
lT(2)2~(3)2~(4)], *z = { 2~(1)2?1(2)2~(3)%(4)), and 
*a = {2~(1)2?;(2)2~(3)@(4)], and, after having en- 
sured that each * has lS symmetry, let us build the 
following functions 

\k = ao*o + a1*1 + &*‘z + * 
’ 

By optimizing the orbitals in each function and by 
variationally selecting the CI coefficients UO, ax, az, . . ., 
we shaI1 have a solution necessarily as good as or better 
than ‘0, and, if the series of the above equations is 
sufhiently long, we shall reach an exact solution. The 
only trouble is that the necessary series is too long. The 
slow convergence of the series is due to the fact that in 
most cases one insists on using a 1s orthogonal to the 2s 
and to the 3s, a 2p orthogonal to the 3p, etc., with the 
2p, 3p, and 3s functions overlapping the 1s and 2s func- 
tions very little. If the added functions overlap very 
little, they will interact very little and correlate 
equivalently. 

However, let us assume that when we construct 90 we 
construct *I, \k2, etc. ut the same time, and we do not 
insist on the best possible 90, but on the best possible 
Q; then the variational principle, used simultaneously 
on both the a’s (the CI coefficients) and the ‘p’s (the 
atomic orbitals), will ensure that the q1 will overlap as 
much as possible. This is accomplished in the multi- 
cmjiguration SCF-LCAO-MO technique (MCSCF- 
LCAO-MO), the third step. Before entering into the 
details of the MC-SCF-LCAO-MO theory, let us 
briefly mention a fourth and fifth step. 

A fourth step in the molecular orbital theory is the 
inclusion of relativistic effects. There is little work 
done in this area at  present (and this is not only true 
for molecular functions, but for atomic functions as 
well). Recent advances in metalloorganic chemistry, 
with heavy metals as constituents, demand a rela- 
tivistic interpretation of the electronic structure. Even 
in molecules containing low 2 atoms, the importance 
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of spin-orbit effects in transition intensities is demand- 
ing more studies and computations in this area. It is 
gratifying to note that a simple perturbation treatment 
on atoms (Hartmann and Clementizl and Clementi22) 
gives energies as good as a full relativistic Hartree-Fock 
treatment.23 

Finally, the “electronic structure’’ of molecules 
should always be considered a limiting case of the vi- 
bronic structure of molewles. Real molecules vibrate 
(and rotate and translate, too) and, therefore, the ques- 
tion of how much we can rely on the Born-Oppenheimer 
approximation should not be ignored. This is a fifth 
step and shall be referred to the work of Kolos and 
Wolniewicz for more details.24 

B. MULTI-CONFIGURATION SELF-CONSISTENT 

FIELD THEORY 

The MC-SCF theory seems to have been first pro- 
posed by Frenke125 (1934), Hartree, Hartree, and 
Swirles26 (1939), and Yutsis27 (1952). Recently, it has 
been reanalyzed and applied by Yutsis, Vizbaraite, 
Strockite, and Bandzaitis2* (1962), Veillard29 (1966), 
Veillard and Clementi30 (1966), Clemential (1967), and 
Das and WahP2 (1966). We shall first consider the 
simpler case of two configurations and expand it later 
to many  configuration^.^^ 

Let us consider a configuration of the type ls22s22pn 
(called configuration A) and a configuration of the type 
1~~2sO2p”+~ (called configuration B). States of like 
symmetry from A and B will interact and the resultant 
function will be (we are interested in its lowest eigen- 
value) 

9 = A ~ A  + B ~ B  

with energy 

E = (\E*IHI\E) = A 2 E ~  + B 2 E ~  + ABEAB 

The SCF theory can be used in solving first 9.4 and then 
\EB, and a secular equation can be solved for 9 = A\kA + B ~ B .  This is standard configuration interaction. 
However, the problem can be solved in one step, i.e., 
an optimal 9~ and 9~ can be found so that, when the 

(21) H. Hartmann and E. Clementi, Phya. Rev., 133, A1295 (1964). 
(22) E. Clementi, J .  Mol. Spectry., 12, 18 (1964). 
(23) Y.-K. Kim, Phys. Rev., 154, 17 (1967). 
(24) W. Kolos and L. Wolniewicz, J. Chem. Phys., 41, 3674 (1964). 
(25) J. Frenkel, “Wave Mechanics, Advanced General Theory,” 

Clarendon Press, Oxford, 1934. 
(26) D. R. Hartree, W. Hartree, and B. Swirles, Phil. Trans. Roy. 

Soe. (London), A238, 223 (1939). 
(27) A. P. Yutsis, Zh. Eksperim. i. Teord. Fiz., 23, 129 (1952); 

24,425 (1954); A. P. Yutsis, Soukt Phys.-JETP, 2,481 (1956); see, 
in addition, T. L. Gilbert, J. Chem. Phys., 43, 5248 (1965). 
(28) A. P. Yutsis, Ya. I. Vizbaraite, T. D. Strockite, and A. A. 

Bandzaitis, Opt. Spectry. (USSR), 12, 83 (1962). 
(29) A. Veillard, Themet. Chim. Acta, 4, 22 (1966). 
(30) A. Veillard and E. Clementi, %%id., 7, 133 (1967). 
(31) E. Clementi, J .  Chem. Phys., 46,3842 (1967); IBM Technical 

(32) G. Das and A. C. Wahl, J .  Chem. Phya., 44,87 (1966). 
Report R J  413, Feb 1967. 

two interact, an optimal !4j is given. In  other words, 
for a given basis set in \EA and \ k ~  an optimal twodeter- 
minant combination can be obtained. The standard 
SCF guarantees an optimal *A or an optimal 9 ~ ;  the 
MC-SCF guarantees an optimal 9, but not an optimal 
\ E A  or 9 B .  For the specific case in consideration the 
E A ,  E B ,  and EAB are standard energy expressions, 
namely 

E A  = 71s + 7 2 8  + 2~1s,2s + fi2Chm + 
m 

fiC(2aJmn - Mmn) + 2 C ~ l s m  + C @ s , m  
mn m m 

EB = 71s + f i z h m  + fiC(2azJmn - b2Kmn) + 
m mn 

2CPls,m 
m 

EAB = cCK28,m 
m 

where T, p ,  h, J, and K have been previously defined 
(see eq 8 and 9), fl and f2 are occupation numbers (fl = 
n/6, fi = (n + 2)/6, n is the number of electrons in the 
2p shell), and al, bl, az, bz, and c are numerical constants 
which ensure proper bookkeeping in the energy expres- 
sion (these are called vector coupling coefficients). The 
indices m and n refer to the 2p orbitals. 

The SCF technique is then applied; namely, an in- 
finitesimal variation is applied on each orbital in 9 A  

and \EB, which brings about a variation 6E in the 
energy. The optimal solutions are those for which 
6E = 0. The orbitals are constrained to be orthonor- 
mal, and the mixing coefficients A and B are subjected 
to the relation A 2  + B2 = 1. The constraints are suf- 
ficient in number as to ensure that a unique solution for 
the problem is found. The MC-SCF technique in this 
respect parallels the traditional SCF technique. 

Let us analyze the results for Be(%), B(2P), and 
C(3P) with electronic configurations 1s22s2, ls*2s22p, and 
ls22s22p2. The M C S C F  functions are found to be 

Be 9(lS) = (1s2) [0.9484(2~)~ - 0 .317(2~)~]  

B 9(’P) = (1s’) [0.9728(2~)~ - 0.2316(2~)~] 

C 9(”) = ( 1 ~ ~ )  [0.9888(2~)~ - 0.1490(2~)~] 

The experimental energies are - 14.6685, -24.6580, 
and - 37.8557 au, respectively. The relativistic correc- 
tions are computed to be -0.0022, -0.0061, and 
-0.0138 au. The single configuration energies (Har- 
tree-Fock) are -14.5730, -24.5290, and -37.6886 au, 
respectively. When this energy is mass corrected, we 
have - 14.5721, -24.5278, and -37.6869 au, respec- 
tively. 

The correlation energy is defined as the difference be- 
tween the experimental energy and the sum of the 
Hartree-Fock and relativistic energies. In the follow- 
ing equations we shall give the correlation energy (&) 
for the three atoms in consideration. 
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Be(%) -14.6685 - (-14.5721 - 0.0022) = -0.00942 au = 
-2.563 eV 

B(*P) -24.6580 - (-24.5278 - 0.0061) = -0.1241 au = 
-3.378 eV 

C ( T )  -37.8557 - (-37.6869 - 0.0138) = -0.1550 au = 
-4.217 eV 

Introduction of the second configuration lowers the cor- 
relation energy error by 0.0424, 0.0311, and 0.0173 au, 
respectively. The remaining error is partly due to the 
ls2 electrons, and these are about 0.0443, 0.0447, and 
0.0451 au, respectively (these values are taken from the 
two-electron isoelectronic series). In  Table I we give 

TABLE I 
ENERQY CONTRIBUTIONS TO TEE TOTAL ENERQY (%) 

MC-SCF + MC-SCF + 
HF H F C R  R R + BC (1s) Remainder 

Be( 1s) 99.3428 99.3578 99.6474 99.9495 0.0505 
B( SP) 99.4720 99.4967 99.6228 99.8041 0.1959 
C(sP) 99.5541 99.5906 99.6362 99.7554 0.2446 

the per cent error of the Hartree-Fock energy, the Har- 
tree-Fock plus relativistic correction ( E ) ,  the two-con- 
figuration SCF calculation plus relativistic correction, 
and the two-configuration calculation plus relativistic 
correction and the ls2 correlation energy contribution. 
The remaining error is 0.0074 au for Be(’S), 0.0483 au 
for B(2P), and 0.1126 au for C(3P). It is noted that 
there are two electrons with parallel spin in addition to 
the 1~22~2 electrons in C(3P), one unpaired electron in 
B(2P). The following algebra is quite tempting: 2 X 
(0.0483) + 0.0074 = 0.1040 au to be compared with 
0.1126 au above reported. More accurately we should 
not use the value of 0.0074 which was obtained for the 
beryllium atom, but rather the value 0.0093 which is 
derived for C2+(%). Therefore, we have not explained 
the correlation effect by the amount of 0.1126 - 0.1059 
= 0.0067 au. This error is a cumulation of small con- 
tributions like the neglect of the relativistic energy dif- 
ference between the ls2(a2s22p2 + b2p4) and the 
1~22~22~2  configurations, oversimplifications in the 
estimate of the p-p correlation correction, the use of the 
correlation energy for the ls2(C4+) in C(3P)1 and other 
small errors. 

How many configurations should be added in order 
to obtain an accurate Be(’S) ground-state energy is not 
certain, without a numerical check. One could expect, 
however, that two configurations are sufficient to give 
90% of the ls2 correlation (one for radial correlation, 
ns22s2, and one for angular correction, np22s2. If we are 
correct, the configurations 1s22s2, ns22s2, np22s2, and 
ls22p2 should improve the Hartree-Fock energy by about 
0.08 or 0.085 au (to be compared with 0.0942 au, the 
total correlation correction). A standard configuration 
interaction treatment would require over 20 configura- 
tions to reach this energy. 

We shall now extend the M C S C F  theory to the case 
of n configurations for a closed-shell ground state. We 
assume that the 2n electrons of a given closed-shell 
system are distributed in n doubly occupied orbitals cp1 
. . . cpn, and we shall refer to this set as the “(n)” set. A 
second set of orbitals +yn+l) . . . cp is used, and this will be 
referred to as the “ ( w  - n)” set. We consider all the 
possible excitations from the (n) set to the (w - n) set; 
i.e., we consider n(w - n) configurations. A given ex- 
citation from the (n) set to the (w - n) set will be indi- 
cated as t --+ u, where t is a number from 1 to n and u is 
a number from n + 1 to w. 

We shall designate as the complete multiconfigura- 
tion-self-consistent field (CMCSCF) technique the 
one where a given orbital of the (n) set is excited to all 
orbitals of the (w - n) set; if an orbital of the (n) set is 
excited to one or more, but not all orbitals of the (w - n) 
set, then we shall describe the technique as incomplete 

In  the following, the MCM formalism is described 
following the analysis of Veillard and ClementLW A 
program for atoms and molecules of general geometry is 
in the coding process. 

MC-SCF (IMCSCF). 

The wave function of the system is 

n o-n 

9 = % o h  + c C a t u $ t u  (10) 
t 3 1  u-1 

If one wishes to exclude a number of occupied orbitals 
from the excitations, i.e., if a number of orbitals are left 
uncorrelated, then this requires simply starting the 
summation over the index t at  somevalue of t larger than 
1. We shall use t or 1’ as indices for the (n) set and u or 
u’ as indices for the (w - n) set. The energy corre- 
sponding to 9 is 

n o-n 

t u  

t u u’ 

t u  

where 

n n 
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It, = Ktj (15) 

(16) 
1 
2 

Ptj = Jij  - - Ki.9 

By simple algebraic manipulations the energy expres- 
sion can be rewritten as 

n II n 

E = 2 2 h ,  + c P t , t  - A,h, + 2CP,, ,  - P,, + 
t - 1  t ’ = l  t ’=  1 

w - n  n n w-n 

w-n w-n 

where 
n o-n 

w-n 

u- 1 
A ,  F A , ,  = Catu2 (19b) 

n 

t = l  
B ,  = B,, = Catu2 

The coefficients a,,, A,, and B ,  are related by the 
following equations 

n w-n 

t = l  u - 1  
1 = am2 + E A t  = am2 + CB, (21) 

or 

t - 1  u - 1  

The coefficient A t  represents the “fraction of an elec- 
tron” which is excited from the p, orbital of the (n) set 
to the ‘p, orbitals of the entire (w - n)  set. The co- 
efficient B ,  represents the “fraction of an electron” in 
the cpu orbital of the (w - n)  set as a result of the excita- 
tion from the entire (n) set. It is therefore tempting to 
reexamine the configuration structure of a 2n electron 
system. The standard electronic configuration for the 
2n electrons is a product of n orbitals. For example, pm 
has the configuration 

(P12VZ2 * * ‘ v n 2  

Let us call such a configuration a “zero-order electronic 
configuration.” The MCSCF-LCAO-MO function 
will be a set of (wn - nz) zero-order configurations with 
appropriate coefficients, atu. It is rather difficult to 
visualize in a simple way the effect of such a rather long 

expansion. However, we can make use of the A ,  and B ,  
coefficients and write the following configuration 
(b12(1-A~) z ( 1 - A ~ )  . . . Z(1-An) 

(bZ (bn 

(n) set 
(bn+12B~(bn+22B*. . . 2 B b - n )  

(w - n) set 
(bo 

which we shall refer to as the “complete electronic con- 
figuration.” The set of (n) orbitals has a fractional 
occupation equal to ( 1  - A,) for the orbital ‘pt, whereas 
the remaining orbitals [the ‘pis of the (w - n) set] will 
have, in general, relatively small fractional occupation 
values, B,. Clearly, the sum of the fractions of elec- 
trons annihilated from the (n) set is equal to the sum 
of the fractions created in the (w - n) set, since C t A ,  = 

The energy E, defined in eq 13 is formally the SCF- 
MO closed-shell energy expansion; however, the pt in 
the CMC-SCF formalism are not equal to the pt of 
the Hartree-Fock formalism. If we indicate with EHF 
the usual Hartree-Fock energy, we can state that EHF 
is somewhat lower than E,, by an amount which is 
almost proportional to the correlation error of EHF, as 
can be seen by analysis of Clementi and Veillard’s ICM 
results for first-row atoms. We now define a quantity 
E, = E - E, which is larger than the correlation energy 
by the amount the E, is larger than EHF. It is noted 
that the correlation energy is commonly defined as 
E - EHF. Therefore the CMC-SCF formalism di$ers 
from most many-body techniques presented to date insofar 
as we do not assume the Hartree-Fock energy to be the 
zero-order energy. 

We shall briefly analyze the energy expression 14 in 
terms of E,  E,, and E,. For this purpose we introduce 
the following definitions. 

CUBU (eq 22). 

Ec(t) = -2ht + 2C2Pttt - 2Ptt 

E,(u) = 2hu + 2P,u + 2C2Ptu 

E,(tu) = 2a&,, - 4atuPfu 

E,(ttl) = Ktz~(1 - a t$? )  

E,(uu’) = Kuut(l - a,,!) 

(23) 

(24) 

(25) 

(26) 

(27) 

t’-  1 

t 

We can now write 

E = E, + CAtEc(t) = CB$c(u) + 
t  U 

Ca,,E,(tu) + CAtt~Ec(t t ’ )  + CBuuJL(uu’) (28) 
tu tt‘ uu’ 

The first term is the contribution to E given by the one- 
electron model. The second term is a correction to E, 
obtained by annihilation of electrons in the (n) set. 
The third term is the energy of the electrons created in 
the (0 - n) set. The fourth term is interaction of 
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created and annihilated electrons. The fifth term is the 
interaction energy resulting from any pair of electrons 
in a cp, orbital interacting with any pair of electrons in a 
p,’ orbital. Therefore, it is the pair-pair interaction in 
the (n) set. The last term is the pair-pair interaction in 
the (w - n) set. 

Inspection of the energy expression (eq 28) reveals the 
reason for the often-found poor agreement between 
computed orbital energies e f  and ionization potentials 
or excitation potentials in the standard SCF computa- 
tions, where E, = Cf(e, + h f ) .  As known, one reason 
is that the orbitals in the excited configuration or in the 
ionized molecule often differ sufficiently from the 
ground-state orbitals even in the SCF-LCAO-MO ap- 
proximation. The second reason is clearly obvious by 
inspection of eq 28, namely that the numerical values of 
the A , and B, coefficients will, in general, vary from the 
ground state to the excited states of a neutral molecule 
or from the ground state of the neutral molecule to the 
ground state of the ionized molecule. 

It is tempting to consider the possibility of a semi- 
empirical scheme whereby the correct ionization po- 
tential or the correct excitation energies are obtained by 
empirically determining the A and B, fractional occu- 
pation values. It is noted that the justification of the 
use of empirical parameters in the Pariser-Parr tech- 
nique lies exactly in the fact that the one-electron 
approximation assumes A ,  = B ,  = 0, whereas in an 
exact theory A , and B, are different from zero. 

Let us now continue with the development of com- 
plete MCSCF-LCAO-MO theory. We wish to ob- 
tain the best 9:s and pu)s, making use of the varia- 
tional principle, i.e., by requiring that (bE/bpf )  = 0 
and (bE/dp,) = 0. In  addition we have to satisfy the 
equations (bE/b&) = 0 and (bE/ba,,) = 0 in order to 
obtain the best multiconfiguration expansion. We 
shall make use of the lagrangian multiplier technique 
for determining cpf and ‘p,, and of the solution of the 
secular equation for determining the a,, coefficients. 

Let us define the following operators 

F ,  = (1 - AJh + 2(1 - A ,  - Ap)Pt + 2AtPf 
2CBuPU + C(&atuKu - 2afu2Pu) + 

U U 

C&JW - 611,) (294 
ut ’ 

and 

F, = Bu(h + 2Pu + C2PJ + 
t 

C(~f,awx, - 2aru2P,u) + 
t 

C B t d d  - b )  (29b) 
tu’ 

where Pi, = (cpI*IPrld and Kij = (&GIv,). 
Differentiation of E with respect to the variational 
parametexs p,, (put &,, A,,  B ,  brings about the following 
relation. 

6E = 2(89flFIVf) + 2(cpflFf1b) + 2(6~ulFuIca.) + 
2(cpulF,16cp,) + CSA,(-2h, - 4CPfV) + 

C W 2 h U  + P U U  + C4PfY) + t 1’ 

U t 

26aw CCatuKiu + 2CCht,[2aocKtu - 8aruPiu + 
t u  t u  

2C~ttuKttr(1 - 6 t t r )  + 2CatufKuut(1 - 6 u u * ) ]  (30) 
t’ U‘ 

The variational principle is satisfied for cpf and p, if 
(bE/bcpJ = 0 and (bE/bp,)  = 0. However, the 
variation in the p’s is constrained by imposition of the 
orthogonality relations 

(cprl(P,) = ail (31) 

where the indices i and j run over the full (n) and 
(w - n) sets. By setting eq 30 to zero, then by dif- 
ferentiation of the above equation, and finally by join- 
ing the resulting equations, we obtain the relation which 
defines pf and pu 

(0 
IF, - q % % c p f p f c p t )  - 

IF, - pb)(pul lFu)JPu)  - 

CI ( O ~ ) ( C P ~ [ ~ ~ J  C p J l  ( o f )  = I cPLf (324 
U 

(U) 

CIpt)(ptIFzIpu)Ipu) t = I ~ u ) u u  (32b) 

which can be written as 

IF, - T f  - TuIcau) = IPf)&t 

IF, + u, - U t J c P u )  = I v u ) 8 u u  

(334 

(33b) 

where T, and Tu are the second and third operators in 
eq 33a and U ,  and U ,  are the second and third operators 
in eq 33b. 

In  the past, use has been made of the “virtual orbi- 
tals” in the configuration interaction technique. It is 
noted in this regard that the pu)s of the (LO - n) set are 
quite different from the virtual orbitals of a standard 
SCF-LCAO-MO computation. The reason is that 
virtual orbitals have very little physical meaning: they 
are obtained from diagonalization of the Fock equation 
and are orthogonal to the occupied orbitals, but the 
variational principle cannot act on them since they do 
not contribute to the total energy. In  general the vir- 
tual orbitals have very little overlap with the occupied 
orbitals, and therefore are of little use in correlating 
the electrons of the occupied orbitals. A discussion on 
this point can be found in Yutsis’ review papern as well 
as in A. C. Weiss’ work. 

It is noted that a given p, will mainly be used to cor- 
relate one, or a t  most two or three (pis, and therefore 
the remaining (n - 1) or (n - 2) or (n - 3) ( p i s  which 
are promoted to that given p, will add little to the 
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Correlation correction. However, by including the 
(n - 1) or (n - 2) or (n - 3) remaining set of ‘pis, 
we will include part of the pair-pair correlation in the 
total energy at  no extra cost. In  addition, the inclusion 
of the additional excitation allows us to make use of the 
equality CB, = E A ,  with the simple physical mean- 
ing for each B ,  and A ,  as previously explained. There- 
fore, for a given A ,  and a given B ,  there are one or a t  
most very few leading terms in the Cuuruz or in the 
x f a r u 2  summation, respectively. The I h l C S C F  
treatments consider only the leading terms in A ,  or B,, 
and this requires a more accurate optimization of the 
basis set for the ‘p, and ‘pu which is very time consuming 
in the computation. 

Recently, the ICM technique was applied to the 
first-a0 and sec~nd- row~~ atoms for two configurations. 
(The theory was applied to open- and closed-shell 
atoms.) For closed shells the ICMSCF-LCAO-MO 
theory was developed by Das and Wahl for the Hz, Liz, 
and Fz molecules. Since only one ‘p, orbital was ex- 
cited, owing to program limitations, the results are 
quite good for Hz, good for Liz (from a molecular view- 
point), and rather poor for Fz (as expected). 

It is finally noted that Nesbeta4 has applied to atoms 
the Bethe-Goldstone formalism which is to some extent 
analogous to the CMC-SCF-LCAO-MO formalism 
(but which does not fully employ self consistency, and 
therefore has to work with larger numbers of configura- 
tions). 

It seems that most of the earlier literature on the 
subject was not noticed by those groups which were 
rather involved in machine computations. This is 
somewhat unfortunate, because the CMC-SCF tech- 
nique does not require any large increase in computa- 
tional effort. The likely reason for the retarded ex- 
plosion of CMC-SCF computations is that an undue 
amount of expectation was placed on the Hartree-Fock 
technique, despite quite extended theoretical proof to 
the contrary available in the last 15-20 years. In  this 
respect the work of Nesbet indicates full awareness of 
the problem.35 The same can be stated for the work of 
L o ~ v d i n ~ ~  where many of the pitfalls of the Hartree-Fock 
technique have been predicted, and where much of the 
CMC-SCF theory had been developed along different 
lines, in Lowdin’s “natural orbitals.” 

(33) A. Veillard and E. Clementi, IBM Technical Report RJ-447, 

(34) R. K. Nesbet, Phys. Rev., 155, 51, 56 (1967). 
(35) For a comprehensive documentation, see R. K. Nesbet, 

“Quantum Theory of Atoms, Molecules and Solid State,” P. 0. Low- 
din, Ed., Academic Press Inc., New York, N. Y., 1966, pp 157-165. 
(36) See, for example, P.-0. Lowdin, Qnantum Chemistry Group, 

Uppeala University, Uppsala, Sweden, Technical Note No. 2, 1957; 
Technical Note No. 48, 1960; Quantum Theory Project for Re- 
search in Atomic, Molecular and Solid State Chemistry and Physics, 
University of Florida, Gainesville, Fla., Preprint No. 53, 1964; Pre- 
print  No. 65, 1964. 

June  1967. 

C. ELECTRON POPULATION ANALYSIS 

The SCF wave functions can be analyzed indirectly 
via a study of the physical properties of the molecule 
under consideration (like moments, polarizabilities, 
vibrational analysis, etc.) or directly by what is known 
as “electron population analysis.” In  the following, we 
shall briefly expose the method of M~lliken,~’ here 
somewhat modified and extended. 

From the previous exposition of the SCF approxima- 
tion, a molecular orbital is written as 

4% = c c x i p x x p  
P 

where X, i, and p are indices which refer to symmetry 
representation, a specific orbital, and a specific basis set, 
respectively. The basis set is in general a symmetry- 
adapted function (SAF); i.e., it transforms as X. I n  
the LCAO approximation the x x p  is a linear combination 
of functions, designated by yn, centered on the atoms. 
The linear combination coefficients of the SAF are de- 
termined on the basis of symmetry alone, and we can 
write 

(34) 

By combining the c’s and the d’s into a new coefficient 
w, we have 

(35) 

where for each X and i the index m refers to a given atom 
and the index s refers to a given yg on the m atom. 

For real functions, the electronic density of ‘pxt is 

( p h i )  = C C W y i m s W X i m r s ’ ( Y m s l  T m j s f )  (36) 
ms m‘s’ 

This relation is the base of Mulliken’s analysis. The 
above sum can be written as 

= C CWximsU)tm’s’(YslYsl)mml = 
mm’ 8s‘ 

where for m = m‘ and s = s’ the overlap (ysl yJ is 
unity since the SAF as well as the y are normalized. 
For each MO, a table such as Table I1 can be con- 
structed. There is one such table for each MO, qXf,  and 
each table is by construction symmetrical. We shall 
call “quadrant” the matrix of numbers with a given m 
and m’ and indicate this as {mm’fxt. The sum of its 
terms is indicated as Sfmm’jxr. The diagonal ele- 
ments of a quadrant are indicated BS { mm’} dX1 and its 
sumasS{mm’}dX{. 

contains quanti- 
ties which are specific to the atomic set for the atom m; 
for m # m’ the quadrant f mm‘} contains quantities 

For m = m‘, the quadrant {mm) 

(37) R. S. Mulliken, J. Chem. Phys., 23, 1833, 1841, 2338, 2343 
(1955). 
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m’ 

1 
1 
1 

2 
2 
2 

TABLE I1 
GRAPHICAL REPRESENTATION OF THE POPULATION ANALYSIS 

m - 1  m = 2  
8 p (i + 1) 8 = (i + 2) 8’ a - 1  8 - 2  

1 [1111] [I1211 ... [21(i + 1111 [21(i + 2111 
2 [I1121 [ 11221 . . .  [2Ui + 1121 M i  + 2121 . . .  ... 

... 

. . .  [ 1 I I 
i + 2  [121(i + 2)1 [122(i + 211 ... [ 1 [ 1 
i + l  [121(i‘ + 111 [122(i + 111 

... ... ... ... ... ... 
which are specific to atomic sets of the atoms m and m’. 

For the atom m the following definitions, borrowed 
from Mulliken, are given. 

Net atomic population 
p?n = CCS(“)xr (38) 

P“I = CCS{ “’1 A i  

Gm = Pm 4- CP“) 

A i  

Overlap population with atom m’ 

(39) 
A d  

Gross atomic population 
(40) 

Let us now focus our attention on the quadrant { mm} . 
The atomic set (y ’s)  of any such quadrant will be of s, 
p, d, etc. type; therefore, within the (mm) quadrant we 
can have subquadrants of the type {m,m,), {m,m,}, 
{m,m,) , etc. designated in general as {mlmll]  where I 
and I ’  are the angular quantum numbers for the 7’s. 
In  full analogy to the previous definitions for the 
quadrants {mm’] we can define S{mlml,]dAr for the 
subquadrants { mlm,t). With this in mind we can in- 
troduce the following definitions. 

Nonhybrid net atomic 

m‘ 

P m i  = C C ~ f m l m t )  (41) 

Pmlip = (mlmll} A t  (42) 

P m l m j l  = CCS(mmt] A i  (43) 

P m ~ m ~ l  = CS{ m l m }  xi 

G m l  = P m l  + CCCPmlmll 

G R d  = Pmlf + CCCPmlm,l’ 

A X  

Hybrid net atomic 

A i  

Nonhybrid overlap 

i 

Hybrid overlap 
(44) 

i 

Nonhybrid gross atomic 
(45) 

A i m’ 

Hybrid gross atomic 

(46) 
X i m’ 

... 

. . .  ... 

. . .  

. . .  
* . .  
. . .  
... . . .  
... 
... ... ... 

... 
... 
. . .  
* . *  

. . .  

. . .  
* . .  
... 
* . .  
. . .  
. . .  
. . .  ... ... 

Hybridization is a very familiar concept in theoretical 
chemistry. Its meaning, however, is often used in an 
exceedingly restrictive sense, usually when we have 
more than one atom. However, hybridization is no 
more than polarization, and therefore we can talk of 
hybridization between two atoms or between two elec- 
trons on the same atom. As a consequence we have 
internal hybridization (within a given atom and due to 
the electrons of that atom) as well as external hybridiza- 
tion (within a given atom and due to a field originated 
outside the atom). External hybridization is the 
familiar one. An example of internal hybridization is 
the beryllium ground-state atom previously discussed. 
As we know the 2s orbital is strongly hybridized (in- 
ternally) with the 2p orbitals. Therefore, the correla- 
tion problem in atoms can be viewed as a problem of 
describing in the best possible way the internal hy- 
bridization, and the correlation problem in molecules 
can be viewed as a problem of describing in the best 
possible way the internal polarization of the com- 
ponent atoms plus the external hybridization. Per- 
sonally I would not mind avoiding the word “hy- 
bridization” in theoretical chemistry, since the term 
“polarization” seems to be more accurate. However, 
I shall continue to use it in deference to previous workers 
in the field. 

It is stressed that the above definitions have meaning 
only for a given basis set. Therefore, they provide 
quantitative data of qualitative character. However, 
it is exactly this type of data which we like to analyze 
in order to obtain some correlation between molecular 
structures. An exact wave function for a molecule 
provides a tool for obtaining exact expectation values. 
These can be obtained, as an alternative, from experi- 
mental data. However, taken alone, neither an exact 
list of expectation values nor an accurate list of ex- 
perimental data constitutes understanding of the elec- 
tronic structure of molecules. 

Let us consider the population analysis in the CMC- 
SCF-LCAO-MO formalism. Since the ql ’s  and the 
(pu)s are orthogonal, we shall have that (#lu/#tut) = 
(#ltyI$ly) = 0, and recalling eq 10 we shall have 
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(*I*) = aoo“*ool~oo> + C C a * u 2 ( * t u l * r u >  
t u  

For each of the determinants $m or the previous 
definitions for the electronic population are valid. 
Therefore, we shall have 

Net atomic population 
P m  = ~ o o 2 P m m  + CCatuzpmtcl 

P,, = Uoo2P“’OD + C C U t u 2 P m m ,  tu 

om = Pm + CP“t 

(47) 

(48) 

(49) 

t u  

Overlap population 

t u  

Gross atomic population 

m’ 

and equivalent expressions for the hybrid and nonhy- 
brid populations. 

D. BOND-ENERGY ANALYSIS 

It is customary in the literature to report wave func- 
tions, expectation values, orbital energies, and total 
energies. The molecular total energy is then compared 
with the total energy of the separated atoms, and deduc- 
tions about bond energies are made. 

In  theoretical chemistry the orbital energies are used 
mainly in connection with the Koopman theorem38 but 
cannot be identified with bond energies. 

In  this work we shall introduce the definitions of the 
“Bond-Energy Analysis.”s1 We shall make use of a 
number of bond-energy classifications which are derived 
at first from the usual SCF-LCAO-MO energy expres- 
sion for the total energy (see eq 13) 

* i j  

The above energy expression can be written as 

where A ,  B, C,  D are indices running over the atoms 
and where hi,, htAB, htABC are the one,  two-, and three- 
center components of hi, E N A , N B  is the two-center com- 
ponent of ENN,  and f ‘ t j ~ ,  P U A B ,  P ~ ~ A B c ,  P f / A E C D  are the 
one-, two-, three-, and four-center components of the 
electron-electron interaction energy. 

We shall then denote as the zero-order energy diagram 

as the finborder energy diagram ( A  # B)  

(38) 8e8, for example, J. C. Lorquett, Rep. Mod. Phya.. 32, 312 
(1960). 

as the second-order diagram ( A  # B # C) 

and finally as the third-order diagram ( A  # B # C # 
D) 

E3 = ~ E A B C D  = CPI~ABCD (54) 
ABCD ABCD ii 

The E,, should be compared with the sum of the 
energy of the separated atoms. The correlation correc- 
tion within Eo can be estimated directly from atomic 
energy computation and can be taken as equal to the 
electronic population within (‘a given atom,” not sum- 
ming up the full contribution to a given m column, but 
only the first quadrant. 

El, the first-order diagram energy, is the first (‘bond” 
energy and links any two atoms in a molecule, two at a 
time. Clearly, the classical chemical forinulas are u 
representation of the first-order diagram-an incomplete 
one, however, since in them only some of the nearest 
neighbor atoms are connected. So we usually do not 
write a bond between neighbor hydrogen atoms in ben- 
zene, although there is clearly an interaction between 
them. The first-order energy differs from the other 
bond energies in that it includes the nuclear-nuclear re- 
pulsion, clearly present only in El. The quantity is 
numerically quite significant; it is part of the potential 
energy, Therefore, in view of the virial theorem, one 
can expect that E1 will be the dominant part of the 
binding energy. A large number of other evidences, 
both theoretical and experimental, are known to sup- 
port this point. As is the case for Eo, E1 is composed 
of a number of terms which will satisfy molecular 
symmetry consideration. In  other words, the equiva- 
lent atom in Eo will have equal energy, so the equivalent 
bonds in E1 will be equal in energy. The correlation. 
energy correction associated with E1 for the atoms A 
and B will clearly depend on the electronic density be- 
tween atoms A and B. But here we should be carefuj 
in the use of atomic correlation energy computations, 
since no bond analogy can be uniquely drawn between 
the electrons in an atom and those in a molecule. 

Ez, the second-order diagram energy, is the three- 
atom interaction less the direct atom-atom pair in- 
teraction. This term does not contain a nuclear-nuclear 
repulsion term, and the one-electron energy (kinetic and 
potential) is relatively small. 

E3, the third-order diagram energy, is the only term 
which does not include one-electron terms; therefore, it 
is totally a potential-energy (Coulomb and exchange) 
term. This term includes, by definition, mainly long- 
range interaction. E3 as well as E2 are in effect neglected 
in many semiquantitative computations (like the 
Pariser-Parr approximation). 

The population analysis, as previously described, has 
an energy analog in Eo and El, not in E2 and Es. Classi- 
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cal chemistry formulas have a partial analog in Eo and 
El. 

The present breakdown of the total energy should 
represent a natural frame for transferability of bond 
energy which has a large body of thermodynamic evi- 
dence within families of compounds. It provides a 
framework which will not change by introducing more 
and more configurations in the MCSCF-LCAO-MO 
formalism. It seems to offer advantages to ab initio 
vibrational analysis and to offer easy interpretation of 
the over-all constancy of group frequency in different 
molecules. Finally, it  maintains the basic ideas of the 
molecular orbital theory, but it associates it intimately 
with our basic intuitive approach in chemistry, i.e., 
that there are atoms in molecules. 

This breakdown does not follow traditional ideas on 
the. number of bonds one would like to see associated 
with an atom. So we could have in a molecule of N 
atoms a hydrogen with ( N  - 1) first-order bonds. 
However, this number will be reduced (a) by considera- 
tion of the nearest neighbors and (b) by quantitative 
consideration of the energy associated with each bond. 

It is noted that there are at most four atomic bonds 
in our analysis: this is an effect of having chosen a 
basis set centered at the atoms. Alternatively, one 
could use localized orbitals and this would alter the 
number of atoms involved in bonds. 

The above discussion brings about the following con- 
clusions: (1) a chemical bond is an arbitrary concept 
and can be defined in as many ways as one wishes; 
(2) of the many possible representations, some are more 
useful than others; and (3) the “chemical bond” con- 
cept is to a certain extent simply a bookkeeping device, 
though of great importance. 

One might prefer to have an exact correspondence be- 
tween electron-population analysis and bond-energy 
analysis. However, the starting point of the electron 
population is (pxz)2, and this can lead only to a sub- 
division involving one and two centers, whereas the 
bond energy analysis, in view of our definitions, in- 
volves one, two, three, and four centers. 

Let us briefly digress to CMGSCF-LCAO-MO 
bond-energy diagrams and compare these with SCF- 
LCAO-;\IO bond-energy diagrams. Let us start with 
the first-order diagrams and the first-order energy EO = 
C A E A o .  The main correction to these diagrams can be 
obtained from atomic computations, more explicitly 
from associating to the EAo a correction proportional to 
the {mm} and the atomic correlation less degeneracy 
effects (see Veillard and Clementimvaa for numerical 
values). This is a very simple correction to introduce. 
Alternatively, the correction to EA” can be computed 
using the device of correcting the Pzr integrals with a 
pseudo-potential (for example, see Clementi’s workag). 
This alternative is not too different from the previous 
one, since the pseudo-potential uses the overlap between 

orbitals as a parameter. A formal equation for Eo can 
be most easily obtained from eq 17. 

The first-order diagrams and their energy E1 = 
x A , B E A B  are the most important in general for 
molecular correlation corrections. The correction to 
these diagrams should be proportional for a given atom 
to xmtZmfmm’].  Alternatively, one could use a 
pseudo-potential computed correction in a manner 
exactly equivalent to our work on atoms. Again the 
formal expression of El can be obtained from eq 17. 

The second- and third-order diagrams cannot be 
corrected by the use of population analysis parameters. 
However, it can be done by the use of the pseudo- 
potential technique or by the CMCSCF-LCAO-MO 
method. The total energy will, therefore, be sub- 
divided as 

where the E’s are the energies computed in the SCF- 
LCAO-MO approximation and the 7’s are the energies 
obtained either from the CMCSCF-LCAO-MO theory 
or from empirical correction to the E, or a proper mix- 
ture of both. 

One of the expectations in proposing the bond-energy 
diagrams partitioning of E is that, by a systematic com- 
parison of a number of molecules, a simple correlation 
will emerge which will put “transferability of bond 
energies” on a sound basis. It is noted that in the early 
attempts at studying molecular kinetics, the approach 
of using Morse-type potentials between any pair of 
atoms was often adopted. The present analysis in 
some respects does exactly that, if one considers only 
zero- and first-order diagrams. In addition it does much 
more. Therefore it is expected that this type of analysis 
will be of help in the formulation of a theory for reaction 
mechanism. 

Other problems, like vibrational analysis, the study of 
the barrier to internal rotation, and charge transfer can 
be explained quite naturally in this framework of 
analysis. We shall return later to these points. 

111. ADDITIONAL COMMENTS CONCERNINQ 
THE CORRELATTON ENERGY 

The CMCSCF-LCAO-MO technique we have pre- 
viously discussed has one rather strong drawback; 
namely, we have not allowed for single and higher than 
double excitations. This can be remedied rather 
simply, however, by noting that once we have the 
orbitals of the (w - n) set, we can construct with these 
single and higher than double excitations, which are not 
included in the CMC theory, and use the standard CI 

(39) E. Clementi, “Tables of Atomic Functions,” Special IBM 
Technical Report, IBM Research Laboratory, San Jose, Calif., 1965. 
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technique. Therefore, we envision a full  solution of the 
problem via the CI-CMGSCF-LCAO-MO technique, 
the main correlation correction being computed via the 
CMC technique, the remainder via the standard CI 
technique. 

In this section me wish to add some more quantitative 
information to the numeric value of the atomic correla- 
tion energy. The reason is that by so doing we shall 
develop confidence in using simple SCF molecular wave 
functions and be able to estimate rather accurately the 
correlation corrections. 

The correlation energy is commonly defined as the 
difference between the exact nonrelativistic energy and 
the Hartree-Fock energy.40 

It is worthwhile to note that there are several 
Hartree-Fock schemes,4l each leading to a somewhat 
different energy and, consequently, to different values 
of the correlation energy. For this reason we state 
from the beginning that in the following, when we refer 
to the Hartree-Fock energy, we refer to the best energy 
one can obtain by the analytical self-consistent field 
method as put forward by R o ~ t h a a n . ~ ~  The reason for 
this choice is simply that by now this method has been 
used to obtain many atomic functions and energies and 
a large number of molecular functions and energies. 

From a conceptual point of view one might prefer to 
define the correlation energy as the difference between 
the exact nonrelativistic energy and the Hartree 
energy, since the Hartree-Fock method presents an 
unbalanced situation when we look a t  the way in which 
electrons with like spins and those with different spins 
are considered.43 The Hartree-Fock method partially 
correlates electrons with the same spins. This correla- 
tion present in the Hartree-Fock method will be here- 
after referred to as precorrelation, where we define the 
precorrelation energy as the difference between the 
Hartree-Fock energy and the Hartree energy. This 
energy difference is a correlation energy, but, in view of 
the accepted definition of correlation, we might say that 
it is a correlation energy ante literam. 

We note that the emphasis on the nonrelativistic 
exact energy in the definition of the correlation energy 
has mainly a practical value. The relativistic energy 
itself can be partitioned into a correlated and an un- 
correlated relativistic energy. 

Since electrons with parallel spins are somewhat corre- 
lated in the Hartree-Fock method and since parallel 
spins occur to a varying extent in the low-energy states 

of atoms, one can expect that the correlation energy 
in the ground states of neutral atoms is not a linear 
function of the number of electrons. The Hartree-Fock 
method uses antisymmetrized wave functions; this is 
done to satisfy the Pauli principle and brings about the 
exchange energy which is the origin of the precorrelation 
energy. Electrons with the same spin find themselves 
encircled by a Fermi hole which prevents electrons with 
the same spin from approaching each other. 

We can expect a large correlation energy for pairs of 
electrons of the same shell (intrashell correlation), a 
smaller correlation energy between electrons of dif- 
ferent shells (intershell correlation), and a quasi-con- 
stancy for the correlation of given types of pairs of elec- 
trons with opposite spin. 

With the Froman44 and Linderberg-Sh~ll~; work in 
mind, one will predict that the correlation energy of the 
ground-state first-row atoms will behave as follows. 
There is a given correlation for the pair of electrons in 
the He atom. For the Be atom, the correlation is about 
twice that of helium. Lithium will have an inter- 
mediate correlation energy between He and Be. Since 
the extra electron (compared with He) is a 2s electron, 
which has a maximum radial probability far from the 
1s electrons, its correlation with the 1s electrons is cer- 
tainly small. In fact, from the Linderberg and S h ~ l l ~ ~  
values, we know it to be very small (the intershell cor- 
relation for 1s-2s is much smaller than for the 1s (or 2s) 
intrashell correlation). The correlation energy of B, C, 
and N in their ground states can be estimated by keep- 
ing in mind that the 2p electrons have all parallel spins 
and consequently the precorrelation existing in the 
Hartree-Fock energy will take care of most of the 
correlation for the 2p electrons. There will certainly be 
some intershell correlation of 1s-2p type and 2s-2p 
type. Since the 2s electrons are in the same spatial 
neighborhood as the 2p electrons, one is tempted to 
assume that (1s-2p) intershell correlation << (2s-2p) 
intershell correlation. 

The correlation energy for 0, F, and Ne should in- 
creme sharply. With those atoms we build one, two, 
and three pairs of unparallel spin electrons, respectively, 
in the same shell (the 2p shell). The sharp increase is 
due to the lack of precorrelation for those newly added 
electrons. 

It is fairly simple to be more quantitative about all 
the above reasoning. Accurate Hartree-Fock energies 
are available.46 The necessary relativistic energies were 

(40) This follows P.-0. LBwdin’s definition of correlation energy. 
(41) See, for example, E. Clementi, J.  C h a .  Phys., 38, 2248 

(1963). 
(42) C. C. J. Roothaan, Reo. Mod. Phys., 32, 179 (1960); C. C. J. 

Roothaan and P. Bagus, “Methods in Computational Physics,” Vol. 
2, Academic Press Inc., New York, N. Y., 1963. 

(43) See, for example, the review paper by P.-0. Liiwdin, “Ad- 
vances in Chemical Physics,” Vol. 11, I. Prigogine, Ed., Inter- 
soience Publishers, New York, N. Y., 1959. 

(44) A. Framan, Phys. Rev., 112, 870 (1958); Reo. Mod. Phys., 

(45) J. Linderberg and H. Shull, J. Mot. Spectry., 5, 1 (1960). 
(46) E. Clementi, J.  Chem. Phys., 40, 1944 (1964); 38, 996, 1001 

(1963); 41, 303 (1964); E. Clementi, C. C. J. Roothaan, and M. 
Yoshimhe, Phys. Rw., 127, 1618 (1962); E. Clementi and A. D. 
McLean, ibid., 133, A419 (1964); E. Clementi, A. D. McLean, D. L. 
Raimondi, and M. Yoshimine, ib id . ,  133, A1274 (1964); E. Clementi, 
ibid., 135, A980 (1964). 

32, 317 (1960). 
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TABLE IIIA 
EXPERIMENTAL, HARTREE-FOCK, AND RELATIVISTIC DATA FOR FIRST AND SECOND Row (IN ATOMIC UNITS)b 

Exptl HsrtreeFocG HF, maaa cor E   el)^^^ Lamb c o f  
- 0. WOO7 0.000022 

Li ‘S - 7.4780 - 7.4327257 -7.43214 - 0.00055 0.000106 
0.000323 Be ‘S - 14.6685 -14.573020 - 14.57229 - 0.00220 

B SP - 24.6579 -24.529052 - 24.52782 - 0.00603 0.000740 
C aP - 37.8558 -37.688611 - 37.68690 -0.01381 0.001439 
C ‘D - 37.8093 - 37.631317 -37.62961 - 0.01377 0.001439 
C ‘S -37.7572 - 37.549535 - 37.54783 - 0.01379 0.001439 
N 4s -54.6122 - 54.4009 11 - 54.39879 - 0.02732 0.002500 
N ZD - 54.5246 -54.296152 - 54.29404 - 0.02736 0.002500 
N ZP - 54.4808 -54.228087 - 54.22598 - 0.02739 0.002500 
0 aP - 75.1101 -74.809369 - 74.80683 - 0.04940 0.004000 
0 ‘D - 75.0378 -74.729213 - 74.72667 - 0.04940 0.004000 

0.004000 0 ‘S -74.9562 -74.610955 - 74.60842 -0.04935 
F 2P - 99.8053 - 99.40928 -99.40644 - 0.08289 0.006015 
Ne ‘S - 129.056 - 128.54701 - 128.54355 -0.13121 0.008614 
Na 25 - 162,441 - 161.85889 -161.85506 - 0.20021 0.01 1856 

‘S - 200.333 -199.61458 -199.61011 - 0.29505 0.015791 
2P - 242.752 -241.87665 -241.87177 - 0.42062 0.020460 AI 

Si 8P - 289.927 -288.85426 - 288.84867 -0.58351 0.025887 
0.025887 

Si ‘S - 289.857 - 288.75845 -288.75286 -0.58414 0.025887 
P 4s - 342,025 -340.71866 -340.71268 - 0.791 11 0.032085 
P 2D -341.973 - 340.64872 - 340.64274 - 0.79110 0.032085 

0.032085 
S aP - 399.144 - 397.50475 -397.49801 - 1.05076 0.039051 

S ‘S - 399.043 -397.37444 -397.36770 - 1.05090 0.039051 
C1 SP -461.514 -459.48187 -459.47482 - 1.37168 0.046765 
Ar ‘S - 529.303 - 526,81734 -526.81017 - 1.76094 0.055190 

a The first and second columns are case identifications; the following columns are the computed HartreeFock energy, the same 
energy mass corrected, the computed relativistic energy (with the spin-spin and spin-rbit energy estimated), and the Lamb shift correc- 
tion. * E. Clementi, “Tables of Atomic Functions,” Supplement to IBM J. Res. Develop., 9 , 2  (1965). H. Hartman and E. Clementi, 
Phys. Reo., 133, A1295 (1964). d E. Clementi, J. Mol. Spectry., 12, 18 (1964). 

He ‘S - 2.9038 -2.8616799 -2.86129 

Mg 

- 0.58382 Si ‘D - 289.898 -288.81500 -288.80941 

P IP - 341.940 -340.60316 -340.59718 - 0.79126 

S ‘D - 399.102 -397.45210 - 397.44536 - 1.05084 0.039051 

available from our work,21,22 and the total energy can 
be obtained experimentally by adding the ionization 
potentials from Moore.” Then the correlation energy 
is simply the total energy minus the Hartree-Fock 
energy minus the relativistic energy. 

With these data we obtain an accurate estimate of the 
correlation energy for 2 to 18 electrons in atoms. 

In  Table IIIA we report the first- and second-row 
atomic symbols and states (columns one and two), the 
total experimental energy (column three), the Hartree- 
Fock energy (column four), the Hartree-Fock energy, 
mass corrected, (column five), the relativistic energy 
(previously reported for the second period’l and here 
given for both first and second period; column six), and 
the lowest order Lamb shift correction (column seven). 
All quantities are in atomic units. 

In  Table IIIB we report first- and second-row atomic 
symbols and states (columns one and two) and the cor- 
relation energy &(l) (column three) obtained by sub- 
tracting from the experimental energy the Hartree-Fock 
energy (mass corrected) and the relativistic energy. 
In  column four we report the average value of the 
correlation energy for electron, Le . ,  Ec(1)l.Z. I n  
column five we report Ec(1) minus the lowest order 

(47) C. Moore, “Atomic Energy Levels,” National Bureau of 
Standards, Circular 467, U. S. Government Printing Office, Washing- 
ton 25, D. C., 1949. 

Lamb shift. (It is noted that these quantities have a 
number of theoretical uncertainties, as explained else- 
where,21 and we shall designate them as Ec(2).) In 
column six we report Ec(2)lZ. It is noted that in the 
two-electron problem the electronic cloud is more con- 
tracted around the nucleus than in the neutral atoms. 
Therefore, the Lamb shift for the neutral atoms is ex- 
pected to be smaller in absolute value than the Lamb 
shift for the two-electron isoelectronic series. As a 
consequence Ec(3) has only indicative value. 

Finally, in column seven we report Ec(3), the correla- 
tion energy Ec(1) minus the degeneracy effect. In 
column eight we report Ec(3)l.Z. 

The data of the first and second rows reveal a strong 
dependency of the correlation energy on the number of 
direct pairs in the system. Indeed we can “estimate” 
the correlation energy by simply adding a somewhat 
constant correlation energy value per pair. One should 
be careful in not identifying this constant amount with 
the standard designation of electron pair as given by the 
electronic configuration. For example, the two elec- 
trons of the ground state of beryllium atoms are com- 
monly referred to as 2s electrons. From the work of 
Linderberg and Shu1146 we know that these are really 
part 2s and part 2p. Indeed most of the correlation 
associated with this pair is due to the 2p electrons in 
the more complete electronic configuration written as 
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TABLE II IB 
VARIOUS ESTIMATES OF CORRELATION ENERGY BASED ON TABLE IIIA AND ON THE Two CONFIGURATION SELF-CONSISTENT FIELD 

COMPUTATIONS (IN ATOMIC UNITS) BY VEILLARD AND CLEMENTI 
Case Ec(1)’ E c ( l ) / Z  E c ( V b  Ec(2)/Z Ec(3Y Ec(3 ) /Z  

He ‘S -0.0420 -0.0210 ... . . .  ... . . .  
Li 2s -0.0454 -0.0151 -0.0453 -0.Ol5l . . .  ... 
Be ‘S -0.0940 - 0.0235 -0.0937 - 0.0234 - 0.0465 -0.0116 
B 2P - 0.1240 - 0.0248 -0.1233 - 0.0247 -0.0929 -0.0186 
C 3P -0.1551 -0.0258 -0.1537 -0.0256 -0.1378 -0.0230 
C ‘D -0.1659 - 0.0276 -0.1645 -0.0274 * . .  . . .  
C ‘S -0.1956 - 0.0326 -0.1942 -0.0324 . . .  . . .  
N 4s -0.1861 -0.0266 -0.1836 - 0.0262 . . .  ... 
N 2D -0.2032 - 0.0290 - 0.2007 -0.0287 ... 
N 2P - 0.2274 - 0.0325 - 0.2249 -0.0321 -0.1932 -0.0276 
0 3P - 0.2539 - 0.0317 - 0.2499 -0.0312 ... . . .  
0 ‘D -0.2617 -0.0327 -0.2577 - 0.0322 . . .  . . .  
0 ‘S - 0.2985 - 0.0373 - 0.2945 -0.0368 - 0.2449 -0.0306 
F 2P -0.3160 - 0.0351 -0.3100 -0.0344 . . .  . . .  
Ne ‘S -0.381 - 0.0381 -0.372 - 0.0372 . . .  ... 
Na 2s -0.386 -0.0351 -0.374 -0.034 ... 

‘S -0.423 - 0.0357 -0.412 -0.034 - 0,3984 - 0.0332 
A1 2P -0.459 -0.0353 -0.439 -0.034 -0.4412 -0.0339 
Mg 

Si 3P -0.494 -0.0353 -0.468 -0.033 - 0.4837 -0.0345 
Si ‘D -0.505 -0.0361 -0.479 -0.034 . . .  . . .  
Si ‘S -0.520 -0.0371 -0.494 -0.035 ... . . .  
P 4s -0.521 - 0.0347 -0.489 -0.033 ... ... 
P 2D -0.539 - 0.0359 -0.507 -0.034 . . .  . .. 

-0.0354 P 2P -0.552 - 0.0368 -0.520 -0.035 
S 3P -0.595 - 0.0372 -0.556 -0.035 -0.595 -0.0372 
S ‘D -0.606 - 0.0379 -0.567 -0.035 . . .  
S ‘S -0.624 - 0.0390 -0.585 -0.037 -0.5902 - 0.0369 
c1  2P -0.667 - 0.0392 -0.620 -0.036 . . .  ... 
Ar ‘S -0.732 -0.0407 -0.677 -0.038 . . .  * . .  

- 0.5306 

a Correlation energy obtained by subtracting from the total experimental energy of the Hartree-Fock (mass corrected) and relativistic 
energy (excluding Lamb shifts). b Correlation energy obtained by subtracting from Ec( 1) the estimate of the Lamb-shift correction 
computed for the twoelectron isoelectronic series. c Correlation energy obtained by subtracting from Ec( 1) the neardegeneracy effects 
as reported in this and a previous paper of this series. 

s(a2s + b2p). This is known from the quoted work of 
Linderberg and S h ~ 1 1 , ~ ~  Watson,48 Sinanoglu, 49  and our 
systematic study.3’J*33 

We can comment on the excited-state correlation 
energies. The correlation energy for the multiplet 
components of a given term is approximately the same. 
The difference in correlation energy, for example, be- 
tween B(2Pz/,) and B(2P8/,) is very small and within the 
error of the estimate. For this reason no such data are 
reported. 

For different states of the same electronic codigura- 
tion, the correlation energy has the following character- 
istics. First, the lowest correlation energyis forthe state 
of highest spin multiplicity. For example, in the 3P, 
ID, and IS series beginning at C (or 0), Ec(~PP) < Ec(’D) 
and Ec(”) < E&S). This is, as mentioned previously 
at  length, a consequence of the spin precorrelation in the 
HartreeFock method. Second, for states with the 
same spin multiplicity the correlation energy is smaller 
for the states of highest angular momentum. For ex- 
ample, &(ID) < &(%) for the carbon and the oxygen 
series, and E C ( ~ D )  < E#P) for the nitrogen series. 
Since states with the same spin multiplicity but dif- 

(48) R. E. Watson, Ann. Phya., 13, 250 (1961). 
(49) 0. Sinanogh, “Advances in Chemical Physics,” Vol. 6, I. 

Prigopine, Ed., Interscience Publishers, New York, N. Y., 1963. 

ferent angular momenta do not have the same correla- 
tion energy (for given 2 and number of electrons), one 
concludes that in the Hartree-Fock method we have not 
only spin-related precorrelation but also angular pre- 
correlation, the angular precorrelation being in the 
sense that the higher the angular momentum (total 
angular momentum) the higher the angular precorrela- 
tion. This  i s  quite interesting because i t  tells us that we 
cannot obtain excitation energies of the correct magnitude 
with the Hartree-Fock method even for states of the same 
multiplicity. A simple explanation of the differences 
of the correlation energies between states of the same 
multiplicity but different total angular momentum is 
that the larger the angular momentum, the more “pref- 
erential” is the electron’s motion about the nucleus. 

Up to now the results we have obtained for the corre- 
lation energy in the first30s50 and ~ e c o n d ~ ~ J l  rows have 
indicated a remarkably simple picture, where one can 
simply divide the correlation energy into “strong” and 
“weak” pairs, the former for intrashell electron pairs, 
the latter for intershell electron pairs. In  addition, for 
the first and second row, the “weak pairs” have much 
smaller correlation where the electrons in the pair have 
different principal quantum numbers; for example, the 

(50) E. Clementi, J. Chem. Phys., 38, 2248 (1963). 
(61) E. Clementi, ibid., 39, 175 (1963). 
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1s-2s pair correlation is smaller than the 2s-2p correla- 
tion. 

There seems to be evidences2 that the above simple 
pairing models3 is only the limit of a more complex 
situation, which we have called the complex pairing 
model. For this we mean that the simple division be- 
tween “strong” and “weak” pairs is inadequate, that 
the “weak” interactions increase not only in number 
(simply because there are more electrons in the systems) 
but also in strength. In other words, the new situation 
is that the correlation energy to a first approximation is 
not the simple sum of the “strong” pairs correlation, but 
one should add to this the contribution of the intershell 
correlation ; this contribution is comparable in value 
to that of the “strong” pairs, One reason for this be- 
havior is that the n, l ,  na, and s quantum numbers 
(GS coupling) do not describe adequately the atomic 
system. If the atomic system under examination is 
partially described by j-j coupling, then this prevents 
assigning strong and weak pairs to the valence electron 
configuration. This point can be simply stated in the 
following way. “If a system is, for example, not a pure 
singlet, but a mixture of singlet, triplet, and quintet 
states, then why consider the correlation as due entirely 
to its singlet component? Further, if the system does 
not possess a well-defined total orbital or spin angular 
momentum, what is the meaning of pairs based on the 
assumption of a well-defined total orbital or spin angular 
momentum?” A second reason is that the number of 
subshells is more important; for example, in the third 
group we have 4s, 4p, 4d, and 4f degeneracy as com- 
pared with only 2s and 2p, the case for the first period. 
These two reasons affect the correlation energy picture 
in the same way; namely, they emphasize the role of 
the “weak pairs” of the “simple pair model.” We 
might say that the larger the number of electrons, the 
more linear the correlation behavior becomes with re- 
spect to the number of all possible strong and weak 
pairs. This is tantamount to saying that we see the 
emerging of a statistical picture which is very likely the 
final limit of the complex pairing model. 

Let us examine, for example, the scandium atom51 
and consider the correlation energy for the ScPD), 
SC+(~F),  S C ~ + ( ~ D ) ,  and Sc3+(1S), with corresponding 
configuration: 4s23d*, 4s03d2, 4s03d1, and 4s03d0. The 
correlation energy difference from Sc to Sc+, from Sc+ 
to Sc2+ and from Sc2+ to Sc3+ are 0.037, 0.034, and 
0.031 au, respectively. In the first step, Sc to SC+, a 

(52) The simple pairing model is exposed in detail by L. C. Allen, 
E. Clementi, and H. Gladney, Rev. Mod. Phys., 35,465 (1963). The 
model fails to sufficiently recognize the importance of 2 dependencyao 
as well as the implication contained in the comments about excited 
states as reported in this work and elsewhere. 

(53) E. Clementi. “Comprehensive Analyses of the First Three 
Periods of the Atomic System,” presented at the Symposium Molecu- 
lar Stlvcture and Spectra, Columbus, Ohio, June 1963; Ab Initio 
Computations in Atoms and hlolecules, IBM J .  Res. Develop., 9, 2 
(1965). 

“strong pair” is destroyed and the 4s electron pro- 
moted to the 3d shell can bring about only “weak 
pairs.” In the second and third steps, we leave un- 
altered the number of “strong pairs” and we vary only 
the number of “weak pairs.” But the correlation 
energy is very insensitive to such distinction of “weak” 
and “strong” pairs and behaves as if the 4s and 3d 
electrons do not depend on the n, 1, m, and s quantum 
numbers at all. (The remarkable linearity of the com- 
puted values, 0.037, 0.034, 0.031 au, should not be 
taken too literally, because of the angular momenta, 
neardegeneracy, uncertainty in ionization potentials, 
lack of accuracy in the computation of the relativistic 
effects, etc.) Unfortunately, the lack of reliable data 
for higher ionization potentials for many cases prevents 
a final conclusion. It is noted that the highest ioniza- 
tion potentials available in the literature are likely to be 
in error, because of the heavy reliance on extrapolation 
and analogy which characterizes the determination of 
the high-order ionization potentials for the third group. 

The net outcome of the analysis of these data is that 
we see the emerging of the “complex pairing model” 
and the collapse of the “simple pairing model.” 

The above considerations on the two-particle model 
are obtained by analyzing the correlation-energy data. 
It should be noted that the two-particle method has 
been proposed and analyzed by Hurley, Lennard- 
Jones, and PoplellB and later by others.s4 Their 
analysis is not within the self-consistent framework. 
Huzinagass has derived a set of coupled Hartree-Fock- 
type equations to determine the two-electron geminals. 

Presently there are no numerical computations to 
prove that the two-particle model functions (called 
geminals) represent a general answer to the correlation 
problem. However, the numerical results on the cor- 
relation energy which we have reported seem to indi- 
cate that this model will work well for the Be atom, less 
well for the Ne atom, and poorly for atoms with more 
than 20 electrons. The reason is the large amount of 
correlation energy due to the intershell correlation. 
In addition, we note that the model a t  present makes 
no provision for those cases where one should work in 
terms of j-j coupling. On the other hand, it is ex- 
pected that the two-particle model will give a satisfac- 
tory answer for saturated molecules with strongly 
localized bonds, The Hartree-Fock (HF) models as- 
sume that each electron experience the average field of 
a11 the remaining electrons and that the total wave 
function can be expressed as an antisymmetrized prod- 
uct of one-electron orbitals. Thus, the exact function 

(54) R. McWeeny and B. T. Sutcliffe, Proc. Roy. SOC. (London), 
A273, 103 (1963); T. L. Allen and H. Shull, J .  Chem. Phys., 35, 1644 
(1961); J. Phye. Chem., 66,  2281 (1962); W. Brenig, Nucl. Phya., 4, 
363 (1957); F. Coester and H. Ktimmel, ibid., 17,477 (1960). 

(55) 8. Huzinaga, “SCF Method in the Paired-Electron Approxi- 
mation,” IBM Technical Report, available on request. 
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TABLE IIIC 
CORRELATION ENERGY FROM THE CHF METHOD (IN ATOMIC UNITS) 

HartreeFock CHF Ec (calcd)“ 
-2.86166801 - 2.9037222 -0.0420421 
-7.4327257 - 7.4850509 -0.0523252 - 14.649920 - 14.573070 - 0.076860 

-24.529052 - 24.632040 - 0.102988 
-37.688611 - 37.829531 - 0.140920 
-54.400911 -54.590641 - 0.189730 - 74.809359 - 75.055357 - 0.245998 
-99.409284 - 99.725809 - 0 . 3  1652 1 

-128.54636 - 128.94431 - 0.39795 
- 161.85734 - 162.26045 - 0.4031 1 
- 199.61430 -200.05139 - 0.43709 - 241,87625 - 242.35842 - 0.48217 
-288.85109 -288.38888 - 0.53779 
-340.71846 -341.30388 - 0.58538 - 397.50460 -398.14259 - 0.63799 
-459.48169 -460.20544 - 0.72375 - 526.81703 - 527.64943 - 0.83240 
-13.611256 -13.654058 - 0.042802 

-0.043015 -32.361154 -32.404169 
-59.111119 -59.154215 - 0.043096 
-93.861103 - 93.904409 - 0.043306 - 1273.6110 - 1273.6543 -0.0433 

Q Difference of E( CHF) - E( HF), 

is replaced by a single determinant of one-electron 
orbitals (at least for closed-shell systems), and the l /r i l  
operator of the exact Hamiltonian is replaced by Cou- 
lomb and exchange operators, representing the average 
field interaction. 

Formally, the Hartree-Fock model can be equated to 
an “unperturbed system” and the difference between 
the exact and the average electron-electron interaction 
will be a “perturbation potential.” This much is well 
known from the Moller and P l e ~ s e t ~ ~  analysis of the 
correlation problem. As zb consequence, one can at- 
tempt to obtain the exact function by taking the H F  
function as a zero-order function and then add some 
correction via perturbation and/or variation tech- 
niques. 

Physically, one can equate the Hartree-Fock model 
to a system where the “Coulomb hole” for electron 
pairs with antiparallel spin is not accounted for. We 
refer to Wigner’s work on this point.5r 

We could attempt to introduce in the Hartree-Fock 
potential an additional term which directly represents 
the “Coulomb hole.” Since we are interested in the 
quantum chemistry of molecular system, we are con- 
cerned with not increasing the mathematical com- 
plexity of the problem beyond the Hartree-Fock formal- 
ism. 

The “Coulomb hole” is introduced directly as a 
modification of the Coulomb integrals JXpq,rrs. This 
modification consists in replacing the integration range 
of the first electron from zero to r and from r to in- 
finity (the usual limits of the JhpP,rr8 elements) with the 
integration range from zero to (r - 6) and from (r + 6) 

(66) C. Moller and M. S. Plesset, Phgs. Rev., 46, 618 (1934). 
(67) E. P. Wigner, ibid., 46, 1002 (1934); Trans. Faraday SOC., 34, 

678 (1938). 

Ec(expt1) 
-0.0421 
-0.0453 
-0.0944 
-0.125 
-0.158 
-0.188 
-0.258 
-0.324 
-0.393 
-0.403 
-0.451 
-0.482 
-0.522 
-0.561 
-0 .60  
-0 .71  
-0 .79  
-0.0443 
-0.0451 
-0.0455 
-0.0457 
-0.047 

to infinity. Since a t  the integration limit r the two elec- 
trons of the Coulomb element occupy the same radial 
position, the effect of replacing r by (r - 6) and (r + 8) 
introduces a discontinuity in the potential. Thus, we 
have a “Coulomb hole.” In our method there are as 
many 6 as J integrals, thus 6 is designated as 8hpq,rr8. 

It is not difficult to obtain an expression for the 
6Xpq,rrs. In our works3 we have made use of two em- 
pirical parameters, one for the case of 6 with X = p and 
the second for the case 6 with X # p. The first parame- 
ter has been obtained by fitting the He atom (‘S state) 
and the second by fitting the Ne atom (IS state). 

With these two fittings we have analytically com- 
puted the J’Xpq,,,rS elements which differ from the 
standard Jhpq,prs because of the discontinuity in the 
integration range. 

In summary, the technique of computation is as 
follows: (a) compute a Hartree-Fock function, (b) 
compute the 6hpq,prs and then the J’Xpq,rra matrix ele- 
ments, and (c) compute again the self-consistent field 
function, but with the newly obtained J’ matrix ele- 
ments. 

The resultant energies (in atomic units) for the first 
and second period are given in Table IIIC. The first 
column gives the Hartree-Fock energy for the func- 
tions we have used M a starting point; the second col- 
umn gives the Coulomb-Hartree-Fock (CHF) energies 
(we shall call this the Coulomb-Hartree-Fock method, 
CHF). The third column gives the difference between 
the CHF and HF energies (ie., the correlation energy 
computed by the CHF method). The results are in 
fair agreement with the “experimental correlation ener- 
gies” presented in Table IIIB. 

The main results of this work seem to indicate that 
(a) the HF method can be improved within the spirit of 
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the one-electron approximation (notice that the H F  
model is a direct extension of the Hartree model, via 
introduction of the Fermi hole; in an analogous way 
the CHF model is an extension of the H F  model, via 
introduction of the Coulomb hole); (b) the CHF semi- 
empirical method proposed and tested here gives corre- 
lation energies in rough agreement with the experimental 
values; and (c) the empirical CHF functions seem 
to be as good as the H F  functions, but this point must 
be studied further. 

At present we are expanding this analysis and we are 
attempting to obtain the 6’s directly from some physical 
model without making use of empirical parameters. 
It is noted that the free-electron gas correlation energy 
expression can be a useful starting point in this direc- 
tion.68 Simultaneously, we are attempting to extend 
the CHF method to molecular systems. 

We note that the CHF method could be reformulated 
by referring to the F integrals (introduced by Slater) 
in place of the J integrals (as defined by Roothaan). 

From the previous discussion one could be led to the 
hurried conclusion that the “simple pairing model” 
should hold well for those molecules with component 
atoms of low Z value (say, Z < 15). Indeed, for such 
molecules the spin-orbit effect (at least at  the equi- 
librium distances) is small and the complications due 
to the near-degeneracy in the atoms are removed, be- 
cause of symmetry requirements in the molecule. It 
is noted that the above conclusion might be in error 
because in multiple-bonded molecules the intershell 
effect can be substantial. 

The availability of the correlation energies for the 
first three periods of the atomic system proved that we 
can use atomic correlation data for predicting the cor- 
relation energy in molecules. This was done first in our 
works on H F  and LiF and CH4,6s then in McLean’s work 
on LiFlm and subsequently in the CHI computations by 
Carlson and Skancke,‘jl the Nz, CO, and BF  analyses 
by Nesbet,62 and the Be0 analysis of Yoshimine.‘j* 

It seems worthwhile to define a few quantities some- 
what more critically than was previously done.u4 First 
we shall partition the correlation energy per orbital. 
If we have n orbitals and 2n electrons, we assume, on the 
basis of our empirical knowledge on atomic data and 
from the CHF work that the total molecular correlation 
energy E,(m) for a molecule m is given by 

Ec(m) = Csr + CCsu 
i i j  

(58) References on the free-electron gas correlation energy are 

(69) E. Clementi, J .  Chem. Phys., 36, 33 (1962); 38, 2780 (1963); 

(60) A. D. McLean, ib id . ,  39, 2653 (1963). 
(61) K. D. Carlson and P. N. Skancke, ibid., 40, 613 (1964). 
(62) R. I(. Nesbet, ibid., 40, 3619 (1964). 
(63) M. Yoshimine, ibid., 40, 2970 (1964). 
(64) This analysis follows the results presented at the 1964 Gordon 

Conference on Quantum Mechanics. The data in Table IV are part 
of the work distributed at that conference. 

available from ref 33. 

39, 487 (1963). 

qtj  is the pair-pair correlation (weak pairing), and qf is 
the pair correlation (strong pairing). If the orbitals 
are not the Hartree-Fock orbitals, but localized orbitals, 
then one would expect that the quantities qtj be quite 
small. Of course the same is true for Hartree-Fock 
orbitals which do not overlap. 

The atomic correlation energy Ec(A) for the com- 
ponent atoms of the molecule m is given by 

&(A) = CtrA i + CsijA i 

We define a quantity, designated as the molecular extra 
comelation energy, Ac(m) as follows 

Adm> = C ( m >  - CEC(4 
C A 

where A is now an index running over the set of atoms 
of m. Clearly for the inner-shell electrons, which retain 
nearly the same electronic distribution in the molecule 
as in the separated atoms, we can expect the same con- 
tribution to q. In other words, the correlation energy 
of the inner-shell electrons of the atoms in a molecule 
is nearly equal to the correlation energy of the same 
electrons in the separated atoms. 

If we use closed-shell atoms in forming a molecule, or 
closed-shell molecules in forming a more complex 
molecule, then the number of pairs in the new molecule 
is equal to the sum of the number of pairs of the sepa- 
rated species (atomic or molecular). In these cases 
one would expect a relatively small value for A,(m) due 
mainly to the facts that (a) there are many more qu in 
E,(m) than in &(A),  and (b) the valency electrons have 
different density in the molecule than in the atom. 

If we use open-shell atoms in forming a molecule, and 
if the molecule pairs the previously unpaired spins, 
then Ac(m) is a rather large quantity, From the atomic 
computations it seems that about 1 to 2 eV are added 
for each new pair. 

In  Table IV we report accurate computations for a 
number of diatomic and other linear molecules and we 
list both Ac(m) and the computed Hartree-Fock dis- 
sociation energy as well as the experimental dissociation 
energy. This table takes some unpublished results 
presented and distributed a t  the 1964 Gordon Con- 
ference on Quantum Chemistry. A similar analysis 
has later been published by Hollister and SinanoghP 
and Cade.66 

IV. CONTRACTED BASIS SET OF GAUSSIAN FUNCTIONS 
In an SCF computation, the number of two-electron 

integrals (one center or many centers) is proportional to 

(65) C. Hollister and 0. Sinanoglu, J .  Am. Chem. Soc., 88, 13 
(1966). 
(66) P. E. Cade and W. M. Huo, “The Electronic Structure of 

Diatomic Molecules.” VI. A. “Hartree-Fock Wavefunctions and 
Energy Quantities for the Ground States of the First Row Hy- 
drides,” Technical Report, Laboratory of Molecular Structure and 
Spectra, University of Chicago, Chicago, Ill., 1966, p 203; VII. A. 
“Hartree-Fock Wavefunctions and Energy Quantities for the Ground 
States of the Second Row Hydrides,” p 313. 
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TABLE IV 
MOLECULAR EXTRA CORRELATION ENERGY (MECE) AND 

DISSOCIATION ENERGY ( D e )  FOR DIATOMIC HETERONUCLEAR 
MOLECULES (IN ELECTRON VOLTS)” 

New 
Moleoule MECE De(HF) De (exptl) pairs 

co lZ+ 3.406 7.836 11.242 2 
BF lZ+ 2.397 6.183 -8.58 1 
LiH lZ+ 1.040 1.476 2.516 1 
FH IZ+ 1.682 4.378 -6.06 1 
CHI ‘-41, -5.20 -13.0 -18.20 4 
N2 ‘2* + 4.631 5.271 9.902 3 
Lil lZ,+ 0.884 0.169 1.050 1 
cz 1.2, + 5.469 0.781 -6.25 2 

0 2  lA, 
0 2  SZ, - 4.910 1.227 5.178 1 

4.171 -0.520 4.171 2 
0 2  ’2, + 3.951 -1.392 3.518 2 
Fz ‘2, + 3.047 -1.374 1.679 1 

“ B y  inspection we see that the new pairs in the molecules 
bring about a correlation energy contribution of the same order 
as found for the pairs in the atoms. We can be more specific 
and first of all note that MECE here is given by using the data of 
Ec( 1) from Table IIIB. If we correct these results by using the 
data from the correlation energy obtained from the two con- 
figuration computations Ec(2), the values are somewhat dif- 
ferent. For example, MECE for BF  is not 2.397 eV, but 3.234 
eV. Note that in BF  we have formed an extra pair, mainly of u 
type and in Fz we have formed an extra pair, mainly of u type, 
and the corresponding energy is 3.047 eV. However, in H F  we 
have formed an extra pair, mainly of u type, and the correspond- 
ing energy is 1.682 eV. In  previous work we have attempted to 
give some general rule on the pair contribution for molecules. 
This work was subsequently continued by Nesbet and Sinanoglu. 
However, the rules presently available are quite successful for a 
few cases and fail remarkably in others. (Of course, one can 
avoid the problem by simply presenting only the case which fits 
the rules well.) For example, if we assume that a pair of p elec- 
trons is associated to a correlation energy of about 0.059 au (or 
1.605 eV) as suggested by our atomic data, then the following 
algebra is tempting: for CO, 2 X 1.605 = 3.210 (to be compared 
with 3.87); for HF, 1 X 1.605 = 1.605 (to be compared with 
1.682); for Nz, 3 X 1.605 = 4.815 (to be compared with 4.631); 
for 02(1Zg+), 2 X 1.605 = 3.210 (to be compared with 3.951). 
Clearly, the agreement improves by using somewhat larger 
values than 1.605 eV. We can compare LiH with Be atom, H F  
with Ke atom, and CHd with Ne atom and obtain the correspond- 
ing values of MECE in agreement with the data of our table. 
The work by Sinan~glu‘~  is a step in the correct direction, but 
fails to recognize the dependency of the correlation energy from 
the density gradient and uses the population analysis data with 
excessive confidence. I t  is noted that, in the population analysis, 
the distribution of charges between atoms A and B is assumed to 
be governed by the overlap of the charge distribution of A and B. 
However, such assumption is exceedingly crude whenever A and 
B are different atoms. Our present inclination is that we can 
transfer more easily data on correlation energy from small mole- 
cules (now available in large volume) to large molecules, than 
from atoms to large molecules. In addition, it seems likely that 
correlation energy from atoms to molecules can be transferred 
more easily if we compare correlation energies of atoms in the 
valency states rather than in the spectroscopic states. 

number of Slater-type functions is about 20 (four to 
five of s type, three of pz type, three of pv type, three of 
pI type, plus some d and f types). 

A relatively simple molecule like CzHe requires about 
90 Gaussian functions, and this brings about the need 
to compute about 7 million integrals over Gaussian 
functions. These integrals are then transformed into 
integrals over symmetry-adapted functions; no matter 
what transformation technique is used, the computa- 
tional time required for the transformation is propor- 
tional to the size of the integral list. Availability of 
large core memory certainly ameliorates the situation 
but does not eliminate the complexity of the trans- 
formation. Alternatively, one could compute directly 
the integrals over the symmetry-adapted functions, 
therefore eliminating the need for the transformations. 
However, in this case one will either compute a re- 
dundant number of integrals over the Gaussian function 
or carry a very long “integral request” list. 

These difficulties can be overcome by replacing the 
individual Gaussians with some appropriate linear 
combination of Gaussian such as to reduce and there- 
fore “contract” the number of stored integrals. This 
has been suggested for large molecular computations 
some time Now we have implemented this sug- 
gestion, and from our preliminary results it appears that 
one can finally compute large molecular systems rather 
accurately. 

Two possible schemes are available for contracting 
the original basis set. On one hand, one could use as 
the contracted set the atomic orbitals of the separated 
atom. In this case one would start with as many con- 
tracted functions as the orbitals of the component atoms 
in their ground state. Computationally, one would 
construct the integrals over the atomic orbitals, making 
use of the atomic expansion coefficients. The drawback 
of this scheme is that the atomic orbitals are in general 
poor representations for molecular functions, except for 
the inner shells. 

A second possibility is to analyze the Gaussian func- 
tions of the atomic orbitals and make appropriate linear 
combinations of the atomic functions. For an illustra- 
tion of this technique, let us consider the Pie(%) atom. 
We shall compare the result of a standard, but optimal, 
basis set obtained by Huzinaga” with the results ob- 

the fourth power of the numbers of atomic functions. 
To adequately describe an atom of the first period with 
s and p electrons, one needs nine to  twelve s-type 
Gaussian functions and five to six p-type Gaussian 
functions. Therefore such an atom, which in a mole- 
cule, will be described by about 30 Gaussian functions 
(ten of s type, five of pz type, five of py type, five of pz 
type, plus some d and f types). The corresponding 

(67) The correct SCF total energy expression for a *A2 ion (the 
case of the pyridine ion, analyzed in this work) is 

where the superscript i indicates the above quantities are obtained 
from the open-shell wave function for the ion, and where the subscript 
t refers to the 2az MO’s singly occupied. In this paper the quantities 
with superscript + refer to the ion from quantities obtained from the 
closed-shell ground functwn. A large part of the confusion existing in 
the literature is due to the identification of quantities here distin- 
guished by the upper index + and by the upper index i. In the above 
equation the summation over t ’  excludes the terms where t’ = t .  
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Tmm V 
NE ATOM. UNCONTRACTED GAUSSIAN SET, ORBITAL ENERQIEB, AND EXPANSION COEFFICIENTS (TOTAL ENERGY - 128.5447 au) 

Orbital exponent Is orbital 2s orbital Orbital exponent 2p orbital 
XI 47870.2 0 * 00021 - 0,00005 X1r 129.802 0.00426 

7385.83 0.00162 - 0.00038 XI: 30.4192 0.03061 
1660.18 0.00863 - 0.00206 Xrr 9.62151 0.11927 XI 

x4 460.539 0.03617 - 0.00856 XlS 3.54645 0.26912 
X6 146.038 0.12134 - 0.03097 XlS 1.41435 0.35733 
XS 50.4137 0.30702 - 0.08388 x17 0.578893 0.33183 
Xl 18.7165 0.43944 -0.17194 Xl0 0.216044 0.16084 

XP 2.6768 0.01554 0.37043 
XlO 0.775195 -0.00230 0.57102 
x11 0.29176 0.00095 0.20449 

XI , 

x0 7,39702 0.22518 -0.10947 E - 0 * 84999 

e - 32.772 - 1.9300 

tained with a “contracted set.” Huzinaga’s set con- 
sists of 11 Gaussian functions of s type, and seven 
Gaussian functions of p type. We shall designate the 
s function as Xl - - Xu, and the seven p functions as 
X12 * X~S. The orbital exponents and expansion co- 
efficients of Huzinaga’s computation are not reported. 

The total energy is -128.5447 au. By simply in- 
specting the orbital exponents and the expansion co- 
efficients, it is clear that (a) a number of Gaussians are 
needed only in order to represent the 1s cusp (the very 
high orbital exponents), and (b) several Gaussians 
belong only to  the 2s orbital, and the small coefficient in 
the 1s is present for orthogonality requirements. 
Therefore, the set of 18 Gaussians can be contracted to B 
smaller set, a “contracted” set. For example, we 
could use the following set, and re-perform an SCF 
computation with it. 

Table V shows the results for orbital energies, total 
energies, and the new expansion coefficients. 

The total energy for the contracted set, X’, is 
- 128.5440. Let us contract even more and use the fol- 
lowing contracted set for a new SCF computation. 

The recomputed orbital energies (au) are -32.76031 for 
Is, -1.92977 for 2.9, and -0,848104 for 2p; and the 
total energy is - 128.5412 au. 

Table VI summarizes the above analysis and gives 

Tmm VI 
C O N T R A ~ D  SET FOR NE ATOM 

18 2s 
orbital orbital 

Xi’ 0.001747 -0.000416 Xi’ 
XI’ 0.043015 -0.010125 Xs 

0.41259 -0.107915 Xs XI’ 
XP’ 0.647292 - 0.267860 Xi0 
Xs’ 0.0145941 0.363564 E 

Xe’ - O.OOO715 0.757529 
e -32.7711 -1,93016 E = - 

2P 
orbital 
0.033118 
0.366407 
0.651301 
0.160667 

-0.85091 

.128.5440 

the total energies, the orbital energies, the number of 
of two-electron integrals for each type of set, and the 
equivalent number of two-electron integrals (the 2p 
orbitals were considered to be subdivided in 2p,, 2p,, 
and 2p,, as they are in most molecules. 

In Table VI1 we have reported in the last column the 
number of elements in the 6 matrix. It is noted that 
the number of integrals is much larger, since (a) we 
compute all the distinct and possible integrals which 
can be derived from the basis set; (b) the 6 supermatrix 
contains both Coulomb and exchange integrals. 

A final example of the usefulness of the contracted set 
is reported for the NZ molecule. Again we started with 
Huzinaga’s N(8P) atomic computation [24] with eleven 
s-type Gaussian and seven p type  Gaussians. This set 
was contracted to  four functions of s type and two 
of p type. The computed total energy is -108.81163 
au. This contracted set of four contracted s-type 
Gaussians and two contracted Gaussians of 2p type is 
equal in number to  a double-f Slater-type set. How- 
ever, a Slater double-C-type set gives an energy of 
- 108.79508 au, or 0.01655 au higher than the Gaussian 
contracted set. 

Before concluding our remarks on the contraction, 
we wish to  point out that one can optimize the con- 
tracted set by performing, for a given selected con- 
tracted set, a series of atomic computations whereby 
the contraction coefficients are optimized (instead of 
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Type 
X set 
X‘set 
X” set 

No. 

81 
82 
8s 
8 4  
85 
86 
81 
88 

TABLE VI1 
COMPARISON OF CONTRACTED AND UNCONTRACTED SETS 

No. of 8 No. of p No. of 6 
Total energy, au 41s) 42s) d2p) basis baais elementu 
-128.5447 - 32.772 -1.9300 - 0.84999 11 7,7, 7 11325 - 128.54398 -32.771 - 1.9301 - 0.85091 6 4,494 861 - 128.54114 - 32.700 - 1.9298 -0.84810 4 3,3,3 406 

Atom 
N 
N 
N 
C 
C 
C 
H 

Type 
1s 
1s 
1s 
1s 
1s 
1s 
1s 
2P 

TABLE VI11 
BASIS SET OF CONTRACTED GAUSSIANS FOR C, N, AND H 

Y Contracted baais - 
~ ( 1 s )  0.0181781 4- 0.1077682 f 0.3232088 + 0.4767384 + O.22O4686 

y(2p) = 0.1384388 + 0.4976080 4- 0.57505810 
y( IS) 
y( 2s) 0.56673191~ 4- 0.55692817 
y(2p) 
~ ( 1 s )  

y(2s) 0.5002786 f 0.6391781 

0.02220811 f 0.1328581~ + O.384358la 4- 0.45798814 4- O.lEi44181s 

= 0.10845818 f 0.46116810 f 0.630&820 
0.64767821 f 0.407898~ f 0.0704882s 

TABLE IX 
UNCONTRACTED GAUSSIAN SET FOR N, C, AND H 

Orb. exp No. Type Orb. axp No. Type 
636.101 80 2P 1.10716 817 1s 
105.386 810 2P 0.261750 818 2P 
27.5167 811 1s 391.445 819 2P 
9.02708 812 Is 64.7358 820  2P 
3.33086 @la 1s 16.2247 821 1s 
0.828625 814 Is 5.33460 822  1s 
0.243109 81s 1s 2.00995 82a 1s 
5.19829 816 1s 0.502323 

Orb. exp 
0,155139 
4.31613 
0.873682 
0.20286 
0.151374 
0.681277 
4.50037 

TABLE X 
MOLECULAR GEOMETFLY FOR PYRROLE  MOLECULE^ 

Center N C(1) C(2) C(3) C(4) H(1) H(2) H(3) H(4) H(6) 
y 0.0 2.128939 2.128939 1.360632 1.360632 4.093449 4.093449 2.571379 2.571379 0.0 
z 1.633593 0.0 0.0 2.433109 2.433109 0.619408 0.619408 4.099559 4.099559 3.598950 

a Distances are given in atomic units; the value of the x coordinate is 0, since the molecule is in the yz plane. 

the orbital exponents as usual). This first requires an 
optimal uncontracted basis set and then new optimiza- 
tion on the contraction coefficients. Work is in progress 
for the programming of this problem. 

From the above results on the Ne atom and N2 mole- 
cule where direct comparison with Slater-type functions 
can be made, and from computations on H20, C2Ha, and 
Hs that we have performed, we tentatively conclude that 
the basis set with more than 150-200 functions must 
necessarily resort to some “contraction” technique; 
otherwise the handling of integrals becomes a very 
expensive process in terms of computational time. 

V. PYRROLE 
The basis set of contracted Gaussians we shall use for 

the C, N, and H atoms are given in Table VIII. These 
contracted Gaussians are built up from single (or un- 
contracted) Gaussian functions given in Table IX. 
The geometry of the pyrrole molecule is given in Table 
X. The molecules of pyrrole have Czv symmetry and 
the following electronic configuration. 

v type 
u type lb2z2b223b24b~25b~a 
T type lb122b121&’ 

1 a122a1 23a124a125a1 26a~27a1a8al 29al 

TABLE XI 

(IN ATOMIC UNITS) 

Ai(o) B d u )  Bi ( r )  AI ( r )  

TOTAL E N E R Q Y  AND ORBITAL ENERQIES FOR PYRROLE 

- 15.71000 - 11.42526 -0.63133 -0.38794 - 11.42520 - 11.37850 -0.42529 
- 11.37931 -1.03448 
- 1.32387 - 0.79702 
-1.09548 -0.62429 
-0.82508 -0.60219 
-0.77787 
- 0.64759 
- 0.57659 

Total energy -207.93135 au 

The total energy and the orbital energies of our com- 
putations are given in Table XI. 

Let us analyze the MO’s. This is done by making 
use of the gross population analyses given in Table XI1 
(for the a1 orbitals), Table XI11 (for the b2 orbitals), 
and Table XIV (for the bl and a2 orbitals). 

The lal, 2al, and 3a1 MO’s are clearly the 1s atomic 
orbitals for the nitrogen and carbon atoms, respectively. 
The remaining two 1s electrons for the carbon atoms 
are the lbz and 2b2 MO’s. This can be seen from the 
population analysis results. The lax, 2al, 3al, lbe, and 
2bz are the inner-shell MO and to a large extent they can 
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1st 
1.99356 

N(2s) 0.00718 
Cl(1S) + Cdls)  0.0 
Cl(2S) + C*(2S) -0.00020 
Cdls) + C,(lS) 0.0 
Ca(2S) + Cd2S) 0.0 
Cl(2PU) 

Ca(2PV) 
- C2(2pm) -0.00020 

- Cd2Pu) 0.0 
0.0 

- 0.00012 

0.0 
0.0 
0.0 

- 0 * 0002 
2.00000 

2ai 
0.0 

- 0.00002 
1.99700 
0.00266 
0.00040 - 0 * 00002 

0.00002 

0.0 
0.0 

0.0 

0.0 
-0.0002 

0.0 
0.0 
2.00002 

1 br 
0.0 
1,99676 
0.00276 
0.00044 
0.0 

-0.00002 
0.0 
0.0 
0.00006 
0.0 
0.0 
2.00000 

TABLE XI1 
PYRROLE. GROSS POPULATION ANALYSIS (AI) 

881 481 681 6si 7Sl 881 981 TOM 
0.0 0.00236 0.00132 0.00020 O.oooO2 0.00002 0.00004 1.99752 
0.0 0.85534 0.42728 0.07166 0.00094 0.00150 0.00702 1.37090 
0.00042 0.00096 0.00008 0.00050 0.00024 0.0 0.0 1.99920 - 0.00008 0.51234 0.03734 0.22734 0.23380 0.00140 0.00752 1.02212 

1.99940 1.99654 0.00040 0.00166 0.00040 0.0 0.0 0.0 
0.00316 0.22062 0.86246 0.26344 0.01096 0.00900 -0.00076 1.35886 

-0.00002 0.17066 0.00174 0.00280 0.69752 -0.00228 0.13268 1.00292 

0.00004 0.01364 0.08014 0.11560 0.28388 0.03796 1.16986 1.70112 
0.0 0.05148 0.03748 0.48572 0.24706 0.41460 0.00008 1.23642 

- 0.00002 0.00240 0.36376 - 0.00002 - 0.00034 0.29072 0.27066 0.92704 

0.0 0.07786 0.01662 0.35292 0.00888 0.72772 0.00552 1.18952 
0.0 0.02566 0.00180 0.08692 0.40844 0.01750 0.23456 0.77486 

-0.00002 0.00888 0.08144 0.14746 0.04660 0.30424 0.17042 0.75902 
0.0 0.05740 0.09678 0.24510 0.06200 0.19748 0.00244 0.66098 
2.00002 2.00000 1.99990 2.00004 2.00000 1.99986 2.00004 17.99988 

PYRROLE. 

0.0 
0.00044 

-0.00004 
1.99682 
0.00282 
0.0 

- 0.00004 
0.00002 
0.0 
0.0 
0.0 
2.00002 

2br 

TABLE XI11 
GROSS POPULATION ANALYSIS (Bz) 

3bl 4br 
0.21860 0.47370 
0.00178 0.00016 
0.96008 0.08428 
0.00072 0.00070 
0.34680 0.33742 

-0.01558 - 0.00004 
0.12384 0.17368 
0.04066 0.61552 
0.13082 0.00570 
0.14564 0.08342 
0.04656 0.22544 
1.99992 1.99998 

TABLE XIV 
PYRROLE. GROSS POPULATION ~ A L Y S I B  ( T )  At AND B1 

1 bi 2bi lar 

N(2Pz) 0.89596 0.76294 
Ci(2pz) f Cz(2~2) 0.71820 0.02808 1.40416 
Cs(2pt) f Ca(2P.) 0.38580 1.20896 0.59580 
Total 1.99996 1.99998 1.99996 

be considered undistorted atomic orbitals of the sepa- 
rated atoms in the molecular field. 

The second group of u electrons are responsible for the 
C-C, C-N, C-H, and N-H bond formation. The 4al 
is mainly constructed from the 2s atomic orbital on C 
and N. This orbital flows over the entire molecular 
skeleton with maximum density at the nitrogen atom 
[the gross charge on 2s(N) is 0.851, lesser density a t  the 
C1 and Cz positions (gross charges on C1 and Cz are 0.34 
partially polarized), and again lesser density at  the Ca 
and C4 positions (gross charges on CP and C4 are 0.12, 
again partially polarized). This MO, therefore, en- 
velops the molecule, has maximum density a t  nitrogen, 
and is polarized. It has an analog in the lowest .rr MO, 
the lbl, which has very similar charge distribution. 
This makes us question the long-standing idea in chem- 
istry that the a electrons are much more delocalized 
than the u electrons. As far as we can see, the 4al MO 

5bi 
0.26210 
0.0 
0.00078 
0.00006 
0.01026 
1.05212 
0.00246 
0.02064 
0.06042 
0.58696 
0.00420 
2.00000 

6br 
0.18958 
0.00008 
0.02378 
0.00004 
0.05590 
0.00396 
0.06090 
0.32090 
0.76172 
0.00150 
0.58166 
2.00002 

Total 
1.14398 
1.99922 
1.07164 
1.99878 
0.75320 
1.04044 
0.36084 
0.99774 
0.95872 
0.81752 
0.85786 

11.99994 

and the lbl  are very similar in character (of course, the 
former is much more bound than the latter). 

The 5al MO has maximum charge at the Cs and C4 
positions, lesser charge a t  the C1 and Cz positions, and 
intermediate charges a t  the N position. This orbital in 
part tends to reverse the charge distribution given by 
the 4a1 by concentrating charges on Ca and C4. In 
addition, whereas the 4al orbital is mainly 2p, polarized, 
the 5al is mainly 2p, polarized. Note that the H5 con- 
tributes to both the 4al and the 5a1, by 0.06 and 0.10 
fractional electron, respectively. 

The remaining MO’s of al symmetry have the charge 
distribution on all the ten atoms of the molecule. The 
5a1, the 6a1, and the 8a1 are responsible for the N-H 
bond. The set 6a1 to 9al as well as the set 3bz to 6bz 
are responsible for the Cl-HI, CrH2, C3-H3, and C4-H4 
bonds. There is no single MO which can be identified 
with a given bond; this is the nature of the MO theory. 

The a-occupied MO’s are the lbl, 2b1, and laz. The 
lbl flow8 over the full molecular skeleton, with a 
density maximum at the nitrogen atom. The 2b1 has 
a node between the nitrogen atom and the rest of the 
molecule; it has a density maximum both at  the Ca 
and the C4 positions and at  the nitrogen atom; a 
density minimum is present at  the C1 and Cz positions 
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(the Cs, C, maximum is higher than the nitrogen maxi- 
mum). The a2 has no charge on the nitrogen (by sym- 
metry); i t  has high density a t  the C1 and C2 positions, 
and low density a t  the Ca and C4 positions; for sym- 
metry considerations, i t  has a node in the C2 symmetry 
axis and, being the lowest of that symmetry, has the 
same phase on C1 and Cz and on Ca and C4. Therefore, 
there is extended conjugation. Pyrrole is an aromatic 
compound, because of the six ?r electrons; however, 
there is one A MO deep in the u MO’s. 

The charge distribution in pyrrole is summarized in 
Table XV. The nitrogen atom has the following 

1s 1.9975 
2s 1.3709 
2p, 1.2364 
2p, 1.1440 
2pz 1.6589 

1s 1.9992 
2s 1.0469 

2p, 1.0217 
2p, 1.0752 

1s 1.9991 
2s 1.0560 
2ps 1.0741 
2pg 1.0310 

2ps 0.9624 

2p, 1.0953 

1s 0.6610 

1s 0.7962 

1s 0.8084 

TABLE XV 
PYRROLE. GROSS C H A R Q E S ~ U M M A R Y  

N 
IS 1.9975 1s 1.9975 S(u) -0.7488 
2s 1.3709 2s 1.3709 6(n) 0.3411 
2pa 2.3804 2p 4.0393 S - 0.4077 
2pr 1.6589 

c1 (or CZ) 
IS 1.9992 1s 1.9992 S(u) -0.0302 
2s 1.0469 29 1.0469 a(*) -0.0752 . .  
2pa 1.9841 2p 3.0593 6 -0.1054 
2pr 1.0752 

Ca (or C4) 
IS 1.9991 1s 1.9991 6(u)  -0.1602 
2s 1.0560 2s 1.0560 S ( P )  -0,0953 
2pr 2.1051 2p 3.2004 S - 0.2555 
2pr 1.0953 

HS 

HI (or Hd 

Ha (or Ha) 

1s 0.6610 IS 0.6610 S(u) 0.3390 

1s 0.7962 1s 0.7962 S(u) 0.2038 

1s 0.8084 IS 0.8084 6(u)  0.1916 

charges, ls22s1.372pa2.382pT1.BB, which could be com- 
pared with the original (separated atom) distribution, 
1~~2s~2p,’2p,~.  Therefore, the nitrogen has gained 
0.41 electron. This gain is the sum of two effects: a 
gain of 0.75 electron from the u orbital, and a loss of 
0.34 electron from the x orbitals. The charge transfer 
acts two ways: the nitrogen i s  a ?r donor and u acceptor, 
with the net result of a gain of 0.41 electron. This 
two-way charge transfer brings about the problem of 
how reasonable are the charge distributions with the 
A-electron approximation, where one assumes in general 
an undistorted core (u electrons). 

For the carbon atoms and the hydrogen atoms we 
have only one-way charge transfer. The carbon atoms 
are both u and x acceptors, whereas the hydrogens are 
u donors. 

Finally, the hybridization of the nitrogen atom is 
s1.37p2.38; the hybridization of the C1 and C2 is s1.05p1.g*; 
and the hybridization of Cs and Cq is s1.0ep2.10. These 

values are not too different from the s1p2 of a trigonal 
hybrid, except for the nitrogen atom. 

VI. PYRIDINE GROUND STATE 
The geometry of the pyridine molecule is reported in 

Table XVI. The z axis is taken perpendicular to the 

TABLE XVI 
MOLECULAR GEOMETRY FOR THE PYRIDINE  MOLECULE^ 

2 Y s Y 

N 0.0 1.328750 Ci -2.185210 0.0 
Hi -3.943160 1.029325 Cz 2.185210 0.0 
Hp 3.943160 1 ,029325 Cs -2.268960 -2.609880 
Ha -4.061760 - 3.581670 C4 2.268960 -2.609880 
H4 4.061760 -3.581670 CJ 0.0 - 3.970520 
Hs 0.0 - 6.007500 

e Distances are given in atomic units; the value of the z coor- 
dinate is 0. 

molecular plane; the y axis is taken as the principal axis 
of symmetry. The basis set of Gaussian functions is 
equal to the basis set used for the pyrrole function. 

The electronic configuration for pyridine is as 
follows. 

u electrons la122a1~3a124a125a~26a~~7a118a~29a~*10a~211a~* 
u electrons lb222bz23b~~4b~25b~26b~z7b~9 
P electrons lb1~2blZ 

P electrons la2 

The computed orbital energies and total energy are 
given in atomic units in Table XVII. In  the following 

TABLE XVII 
TOTAL ENERGY AND ORBITAL ENERGIES FOR PYRIDINE 

(IN ATOMIC UNITS) 

Ai(o) Bda) Bi(*) Ad*) 
-15.67755 -11.46115 -0.62227 -0.44725 
-11.46112 -11.43440 -0.45856 
-11.44301 -1.11025 
-11.43432 -0.90435 

-1.32774 -0.72600 
- 1.15774 -0.67003 
-0.92182 -0.57950 
-0.77915 
-0.70116 
- 0.63938 
- 0.46543 

Total energy -245.62194 au 

we shall analyze the results by comparing the orbital 
energies and the gross electronic charge distribution 
obtained from the population analysis (Tables XVIII, 
XIX, and XX). 

The first group of 340’s are the inner shells, i.e., the 1s 
on the N atom and the 1s on the five carbon atoms. 
These are represented by the following RilO’s: la1 (the 
1s for N), 2al (the 1s for C1 and CZ), 3al (the 1s for C,), 
4al (the 1s for C3 and C4), lbz (the 1s for C1 and C,), 
and 2b2 (the 1s for Cp and CJ. The orbital energies of 
these MO’s are nearly identical with the 1s orbital 
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TABLE XVIII 
PYRIDINE. GBOSS POPULATION ANALYSIS (AL) 

Symmetry 
function 181 

N(1d 1.99366 
N ( W  0.00720 
Ci(le) + C:(~E) 0.0 
Cl(2s) + Cd2s) -0,00034 
Cdls) + Cdla) 0.0 
Ca(1s) + Cb(2a) 0.0 
Cdla) 0.0 
Ch(2a) 0.0 
Hi(ls) + Hdls) 0.0 
&(le) + EL(le) 0.0 
&(la) 0.0 
Ci(2pz) - Cr(2pz) -0.00044 
CI(2PZ) - c1(2Pz) 0.00000 
N ( ~ P v )  0.00002 
Ci(2py) + Cx(2py) -0.00008 
Cd2P") + O(2Py) 0.00000 
W 2 P d  0.0 

281 
0.0 
0.0 
1.99666 
0.00258 
0.00078 

-0.00002 
0.0 
0.0 

0.0 
0.0 
0.0 
0.0 
0.00004 
0.0 
0.00002 
0.0 

- 0.00002 

381 
0.0 
0.0 
0.0 
0.0 
0.01374 
0.0 
1.98348 
0.00280 
0.0 
0.0 

- 0.00002 
0.0 
0.00002 
0.0 
0.0 
0.00002 
0.0 

481 
0.0 
0.0 
0.00080 

-0.00004 
1.98270 
0.00286 
0.01378 

-0.00006 
0.0 

- 0.00002 - 0.00002 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

681 
0.00226 
0.77424 
0.00108 
0.58370 
0.00030 
0.19752 
0.00010 
0.08172 
0.02678 
0.08420 
0.00192 
0.16054 
0.01642 
0.11498 
0.00148 
0.03636 
0.01418 

681 

0.00082 
0.25442 
0.0 

-0.00036 
0.00112 
0.60648 
O.OOl08 
0.60108 
0.00050 
0.05050 
0.05052 
0.05096 
0.11210 
0.00056 
0.20116 
0.02802 
0.04098 

781 
0.00044 
0.12372 
0.00042 
0.24870 
0.00018 
0.08166 
0.00080 
0.30768 
0.08218 
0.03034 
0.10802 
0.20438 
0.19246 

-0.00194 
0.20458 
0.39294 
0.02362 

881 
0.00002 
0.02660 
0.00004 
0.05190 
0.0 
0.01004 
0.00002 
0.03600 
0.19996 
0.13242 
0.14528 
0.29440 
0.31520 
0.11322 
0.21698 
0.12804 
0.32976 

981 
0.00016 
0.02928 
0.00018 
0.13222 
0.00022 
0.15610 
0.00014 
0.05362 
0.28018 
0.48700 
0.02880 
0.21742 
0.45192 
0.00608 
0.04148 
0.11496 
0.00028 

1081 
0.00004 
0.05102 
0.00004 
0.00428 
O.OoOO4 
0.02214 
0.0 
0.00934 
0,05212 
0.01634 
0.41928 
0.07050 
0.03148 
0.25404 
0.20728 
0.14904 
0.71408 

1181 

0.00018 
0.24248 
0.00002 
0.01246 
0.00004 
0.00798 
0.0 
0.00004 
0.12616 
0.03690 
0.02590 - 0.00264 
0.00080 
1.17376 
0.13986 
0.21450 
0.02154 

t0t81 
1.99758 
1.50896 
1.99924 
1.03510 
1.98912 
1,08476 
1.99920 
1.07222 
0.76786 
0.75880 
0.77968 
0.99512 
1.12038 
1.66076 
1.01274 
1.06390 
1.14444 

Tot81 2.00002 2.00004 2.00004 2.00000 2.00000 1.99904 1.99998 1.99988 2.00004 2.00004 1.99998 21.99996 

TABLE XIX 
PYRIDINE. GROSS POPULATION ANALYSIS (Bz) 

Ib: 
1.99636 
0.00270 
0.00088 - 0.00002 
0.0 
0.0 
0.00006 

- 0.00002 
0.0 
0.0 
0.0 
0.00004 

2br 
0.00090 - 0.00004 
1.99624 
0.00290 
0.0 - 0.00002 
0.0 
0.0 

- 0.00002 
0.00002 
0.00002 
0.0 

3br 
0.00138 
0.74362 
0.00128 
0.66958 
0.08190 
0.07406 
0.14316 - 0.00518 

-0.00476 
0.12302 
0.07822 
0.09372 

Total 2.00000 2.00000 2.00000 

TABLE XX 
PYRIDINE. GROSS POPULATION ANALYSIS ( T) Az AND B1 

1 bi 2bi 1 8 2  

N ( ~ P * )  0.41500 0.59524 
Cl(2pr) f Cz(2pz) 0.76454 0.24148 1.00354 
C~(2pr) f c4(2p;) 0.56764 0.44064 0.99648 
CS( 2Ps 1 0.25284 0.72264 

Total 2.00002 2.00000 2 * 00002 

energies of the corresponding free atoms (3P for carbon 
and $3 for nitrogen). 

The second group of MO's are responsible for the 
bonds of the pyridine molecule. The 5a1 MO has the 
charge concentrated mainly on the N atom, less on the 
Cl and C2 atoms, and even less on the Ca and C, atoms. 
The charge is built up mainly of 2s functions polarized 
parallel to the principal symmetry axis (including 2p,). 
The 6a1 MO has the charge distributed approximately 
equally on the six atoms of the ring. The 7al MO is the 
first MO of a1 symmetry where there is nonnegligible 
(0.22) electronic charge on the five hydrogen atoms. 
The lla1 MO is the main contributor to the lone-pair 
electrons on nitrogen. The 2p, population is 1.17 elec- 
trons, and the 2s population on nitrogen is 0.24 electron, 

4b: 
0.00062 
0.30820 
0.00074 
0.36620 
0.11650 
0.14388 
0.37044 
0.00040 - 0.00262 
0.29356 
0.24162 
0.16052 

2.00006 

6bl 
0.0 
0.00146 
0.0 
0.00302 
0.00934 
0.00252 
0.36822 
0.25710 
0.12432 
0.33594 
0.38656 
0.51160 

2.00008 

6br 
0.0 

-0.00390 
0.00002 

- 0.00360 
0.27574 
0.28314 
0.00516 
0.42002 
0.46272 
0.00726 
0.29742 
0.25602 

2.00000 

7br 
0.0 
0.00722 
0.0 
0 * 00864 
0.30518 
0.30322 
0.16160 
0.41966 
0.52766 
0.25124 
0.01321 
0.00232 

1.99996 

TOM 
1.99926 
1.05926 
1.99916 
1.04672 
0.78866 
0.80680 
1.04864 
1.09198 
1.10730. 
1.01104 
1.01706 
1.02422 

14.00010 

giving a net contribution of 1.41 electrons to the lone 
pair. However, the remaining 0.59 electron is de- 
localized (mainly as 2pJ on CI, CZ, Ca, and C4 and 
somewhat on H1 and H2. This computation therefore 
does not support the supposition that the lone-pair 
electrons on pyridine are about equally distributed on 
the N atom and on the rest of the molecule. The 
above values seem to indicate that our traditional ideas 
of a localized lone pair are not too much in error. The 
4b2, the 6b2, and the 7 b  account for 1.59 of the 5 elec- 
trons in the hydrogen atoms. The a1 MO's (from 7al to 
llal) account for 2.3 electrons in the hydrogen atoms. 
Therefore, the 5 electrons of the hydrogen atoms are 
present in the 14 molecular orbitals. This gives an idea 
of the extent of the delocalization in the u frames. 

The two ?r electrons of lbl are concentrated on the N 
atom, less a t  the C1 and Cp positions, less a t  the C3 and 
C4 positions, and even less a t  the C5 position. The 
trend is partially reversed in the 2b1 MO. The la2 MO 
has about equal distribution on the C1, C2, C3, and C4 
atoms. 

Table XXI summarizes the charge migrations in the 
pyridine molecule. The N, C1 (or C2), Ca (or G), and 
C5 atoms have the following charge distribution. 
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TABLE XXI 
PYRIDINE. GROSS C H A R Q E S ~ U M M A R Y  

N 
1s 1.99758 1s 1.99758 1s 1.99758 6(u) -0.21594 
2s 1.50896 2s 1.50896 2s 1.50896 6(n) -0.01024 
2pz 1.04864 2pa 2.70940 2p 3.719M 6 -0.22618 
2pU 1.66076 2pr 1.01024 
2pz 1.01024 

1s 
2s 
2PZ 
2Pu 
2P. 

1s 
2s 
2PZ 
2PV 
2Pa 

1.99925 
1.04718 
1.04355 
1.01490 
1.00478 

1.99914 
1.06574 
1.11384 
1.04406 
1.00238 

1s 
2s 
2Ps 
2Pff 

1s 
2s 
2Pu 
2Pr 

CI (or C,) 
1.99925 1s 1.99925 6(u) -0.10488 
1.04718 2s 1.04718 S(n) -0.00478 
2.05845 2p 3.06323 6 -0.10966 
1.00478 

Ca (or Cd 
1.99914 1s 1.99914 6 ( u )  -0.22278 
1.06574 2s 1.06574 6 ( n )  -0.00238 
2.15790 2p 3.16028 6 -0.22516 
1 ,00238 

cs 
IS 1.99920 1s 1.99920 1s 1.99920 6(u)  -0.22690 
2s 1.07222 2s 1.07222 2s 1.07222 6(n) $0.02452 
2pz 1.01104 2pa 2.15548 2p 3.13096 6 -0.20238 
2p, 1.14444 2pr 0.97548 
2p, 0,97548 

HI (or Hd 
Is 0.77826 1s 0.77826 1s 0.77826 6(u) 0.22174 

Ha (or H4) 
I s  0.78285 1s 0.78285 1s 0.78285 6(u)  0.21715 

HS 
I s  0.77968 1s 0.77968 1s 0.77968 6(u) 0.22032 

N ~~~~~1.~l~p,P.~l~p,l.Ol 

Cl ls~2s'.062pu~.~~2p,1.~ 
co ls~2s'.~2pu'.'~2p,'.~ 
cs ls'2s'.0'2pa*.ls2p,o.~' 

The hybridization of the carbon atoms is about exactly 
the s'p2 trigonal hybridization. There is no two-way 
charge transfer on the nitrogen atom, as encountered 
in pyrrole. 

The nitrogen atom is negatively charged by 0.22 
electron, C1 by 0.11 electron, Cs by 0.22 electron, and 
Cs by 0.20 electron. Each of the five hydrogen atoms 
has lost 0.22 electron. 

Clearly the nitrogen atoms in pyrrole and pyridine 
are in a different situation, one being bound to two car- 
bon and one hydrogen atoms (pyrrole), the other only 
to two carbon atoms (pyridine). Therefore, the bond is 
N-H in the first case and a lone pair in the second case. 
In addition, in pyrrole the N atom brings two electrons 
to  the x system, whereas in pyridine it is only one. 
Therefore, in pyrrole the N atom is a x donor, whereas 
in the pyridine molecule the N atom retains all its 
charge (actually it is very slightly a r acceptor). The 
N atom is a Q acceptor in both molecules, but the N-H 
bond in pyrrole (which is partly NfH-) makes the N 
atom a stronger acceptor than in pyridine. All this 
can be obtained quantitatively by simple inspection of 
the population analyses of pyrrole' and pyridine. 

In the following we shall attempt to correlate the 
MO's of pyrrole with the MO's of pyridine. This can 
be done rather simply by noticing that to a very gross 
approximation pyridine can be transformed into pyrrole 
by removal of Cs and Hs and by adding a hydrogen 
atom to the nitrogen. Therefore, by looking at  the 
gross charge tables we should see which are the most 
affected orbitals in this transformation. On symmetry 
arguments it is clear that the pyridine electronic con- 
figuration transforms itself into the pyrrole configura- 
tion by subtracting two MO's of a1 symmetry and one 
of b2 symmetry. The first MO of a1 symmetry to be 
subtracted is the 3at. The removal of Cg will affect 
mostly the 6%' and the 7a1 MO's; since there are four 
electrons in these two MO's and we wish to remove only 
two, we can think that the 6a1 and the 7al MO's will 
coalesce into one with an orbital energy intermediate 
between the orbital energies of 6%' and 7a1. This lower- 
ing in orbital energy will bring about a lowering of the 
full remaining set of a1 orbitals. In particular the l la l  
MO will be lowered quite drastically because the lone 
pair is now replaced by a u bond. The most dec ted  
orbitals in the bt symmetry upon removal of CS are the 
4bz and 5bz. A removal of one 1110 from this symmetry 
will bring the two into one as in the case of the a1 sym- 
metry. It is therefore possible to  correlate these two 
molecules rather simply. For the x electrons there is 
no difficulty since there are six x electrons in both 
molecules: four in the bl symmetry and two in the az 
symmetry. This type of correlation suggests the 
possibility of transferability of bond charges between 
molecules. 

VII. PYRIDINE ION, 2Az 
Here we shall consider the wave function for one of 

the positive ions of the pyridine molecule. The ion is 
obtained by the process a2(2) + a2(l), whereby one of 
the two x electrons in the a2 molecular orbital is ionized. 
The resulting function is therefore a doublet, 2A2. The 
geometry of the pyridine ion used in the computation is 
given in Table XVI. 

Before analyzing the results of the computation, it 
seems worthwhile to  state the limitations of this work 
and to  clarify some confusion existing in the current 
literature concerning the use of computed SCF ground- 
state functions for prediction of excited states and 
ionization potentials. 

The basis set we have used is quite small and in- 
suffcient t o  obtain a Hartree-Fock limit (Le.,  the best 
possible single determinant function with a basis set 
of such nature that any more extended or different basis 
set will not produce any difference in the computed 
density distribution). Our program can handle much 
larger basis sets than the one adopted. However, we 
have used consistently this size basis set for pyrrole, 
pyridine, pyrazine, and pyridazine, and we are now 
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working on substantially larger molecules. The 
choice of the size was so as to ensure standardization in 
a relatively large number of molecules. Whereas for 
the molecules presented up to now in this series of 
papers, we are far below the computer program limit; 
the same will not hold in future papers of this series. 

It is a rather standard practice in quantum chemistry 
to attempt to extract from a given computation as much 
information as feasible. For example, the orbital ener- 
gies obtained from self-consistent-field ground-state 
functions are compared with ionization potentials, and 
the orbital energies of virtual orbitals are often used for 
prediction of excitation energies. These attempts are 
correct as long as it is fully realized that we are attempt- 
ing to obtain semiquantitative information from quan- 
titative computations. To put it differently, the at- 
tempts quoted above are questionable on a theoretical 
ground since the ionization potential as well as the 
excitation energies involve necessarily quantities which 
cannot be extracted from the ground-state wave func- 
tions alone. 

Let us analyze the rather old assumptions which were 
made when one equates an orbital energy with an 
ionization potential. One standard argument was that 
the ground-state wave function (let us take the case of a 
closed-shell ground state), h+b0, and an ioiiic state wave 
function, indicated as 2$r (where the index i designates 
the ith MO doubly filled in '$0 and singly occupied in 
the double state 2$t) differs formally by - e t ,  the orbital 
energy of the ith MO of '$0. Formally, one can write 
that the ground-state energy, E('$O), and the energy of 
the ion, E(2$,) ,  are related by the equation 

E(2$,) - E('$o) = - E $  = IPI 

where IPi is the ith ionization potential. The standard 
argument is that if 2$t and are reasonable approx im-  
tions to the exact wave functions of the corresponding 
electronic states, - E t  should give a reasonable ap- 
proximation to the experimental ionization potential. 
However, we know that the Hartree-Fock technique 
often gives unreasonable results. It seems, therefore, 
useful to study this matter somewhat more rigorously. 

In  the following we shall restrict ourselves to vertical 
ionization potentials; namely, we shall consider the ion 
when it has the same geometry as the ground-state 
molecule. We shall use the following symbols: the 
orbitals 1 to n are doubly occupied in the ground state 
(assumed to be a singlet state for simplicity) with wave 
function l$o; an index t refers to any orbital in the n set; 
an index u will refer to an empty orbital (virtual orbital). 
Let us consider, in addition to l$o, a doublet positive 
ion, 2$11, where the subscript t l  indicates that in the n 
set of orbital 1, the tth one has only one electron. 

By definition, the exact energy of these states is the 
sum of the Hartree-Fock, relativistic, and correlation 
energy, or 

E('$O) = EHF('$O) + ER('$O) + Ec('$O) 

E(2$d = EHF(2$t1) + ER('$fl) + E~(~$tl)  
(55) 

(56) 
The exact (or experimental) ionization potential (IP) is 

IPll = E(Vf1) - E('$o) (57) 

Equation 3 requires knowledge of the relativistic 
correction. From our analysis of the relativistic correc- 
tion in atoms, we can conclude that, if the ionization or 
the excitation of the electrons in the ground state refers 
to an inner-shell electron, the relativistic correction 
cannot be ignored. Quantitatively, removal of the 1s 
electrons from Be, Ne, Mg, and Ar brings about a 
variation in the relativistic energy of the order of 0,001, 
0.003, 0.228, and 1.217 au (or 0.027, 9.24, 6.20, and 
33.11 eV). One can interpolate between the above 
values; however, one should remember that removal of 
inner-shell electrons causes a nonnegligible rearrange- 
ment of the remaining inner-shell electrons and, by 
consequence, of the valency electrons. Again, from 
our analysis of the relativistic correction in atoms one 
learns that the inner core electrons contribute about 
equally in the neutral atom or ion. Quantitatively the 
1s contributions to the relativistic corrections for Ar16+, 
Ar14+, ArS+, Ar6+, and neutral Ar are - 1.255, - 1.248, 
- 1.229, - 1.221, and -1.271 au, respectively. 

For the valency electron the relativistic energy cor- 
rection is clearly much less important. Quantitatively 
the relativistic corrections for the one 2s electron in Be, 
one 2p electron in Ne, one 3s electron in Mg, and one 3p 
electron in Ar are of the order of -0.00008, -0.00167, 
-0.00068, and -0.00374 au, respectively. 

From this analysis one can estimate the relativistic 
correction in molecules, case by case. It is not too bad 
an approximation to use the gross population analysis 
data relative to a given molecule and then transfer 
atomic data for the relativistic correction. For ex- 
ample, if a molecular computation yields a wave func- 
tion with the following gross population for a carbon 
atom, ls(2)2s(l)2p(2)2p(l), then we can assume the 
following relativistic correction: 2 X 0.00609 + 1 X 
0.00066 + 3 X 0.00014 = 0.01326 au, where the data 
are obtained from computation of the 3P state of the 
carbon atom. Had we used data from the ' S  carbon 
atom, we would have 2 X 0.00607 + 1 X 0.00067 + 
3 X 0.00014 = 0.01323 au. It is noted that the 2s 
and 2p orbitals in the ' S  excited state are quite different 
(more extended away from the nucleus) from those of 
the 3P state. Therefore, the above difference in the est- 
imate for the carbon atom in the sp2 trigonal hybrid is 
indicative of the type of error one would accept in us- 
ing atomic data in order to estimate molecular relativ- 
istic correction for low 2 atoms. 

Finally, we would like to point out that the approxi- 
mation here introduced fails totally for internuclear 
distances much shorter than the equilibrium distances. 
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In  addition, if the population analysis indicates the 
existence of ionic character, then the use of neutral 
atomic relativistic correction data is questionable to a 
degree proportional to the extent of the ionic character. 

I n  addition to knowledge of the relativistic correction, 
eq 57 requires knowledge of the correlation-energy cor- 
rection. The following argument can be presented. 
First, in the ground-state function l$o, there are n pairs 
(since there are n orbitals doubly filled) and n(n - 1)/2 
pair-pair interactions. In general, the correlation 
energy of a pair is larger than the correlation energy 
associated with a pair-pair interaction. However, the 
sum of the pair-pair interaction might very well be 
larger than the individual pair correlation energy (this 
depending on case by case and on the size of n). Let 
us indicate with 7,  the pair correlation energy of elec- 
tron pair in the tth orbital and with 2qr,, the pair-pair 
interaction between the pair of electrons in the orbital t 
and the pair of electrons in the orbital t ’ .  Assuming, 
but not too seriously, that the qt  and r I l p  are constant 
in the various states, and assuming for simplicity that 
we are dealing with a case where the difference in the 
relativistic correction between neutral state and excited 
or ionic states is negligible, then we have 

IPt1 = AEIJF(*$, l ;  ‘$0) - (? l t  + Ctlitt) (58) 
t‘ 

since 

t’ t‘ t” 

t’ t” t 

It is noted that vr1 = 27,,t and that thenotation 
b) stands for E H F ( b )  - E H F ( a ) .  In eq 59 and 60, higher 
order correlation than the pair-pair are ignored. In 
addition, the angular dependency of the correlation 
energy is also ignored, in what concerns differences be- 
tween and 2$f1. 

The correlation energy per pair varies between some- 
what more than 1 to about 2 eV. Therefore, it is clear 
that in comparing Hartree-Fock computations for neu- 
tral ground-state molecules with positive ions or ex- 
cited states, one should not expect agreement with ex- 
perimental values. If and when agreement exists be- 
tween orbital energies and ionization potentials, the Teason 
i s  not that the Hartree-Fock function i s  a n  adequate ap- 
proximation of the exact functions but results from a can- 
cellution of errors. 

In the remainder of this section we shall indicate 
where and when such cancellation is to be expected. 
This brings about a brief analysis of the HartreeFock 
energy contribution to the ionization potential. 

The total energy for the ground state of the neutral 

closed-shell molecule in the Hartree-Fock approxima- 
tion is given by 

EHF(’$O) = C(Hrt + et ’ )  (61) 
t‘ 

and the ground state for the positive ion is given by 

where the superscript + refers to quantities obtained 
from a Hartree-Fock solution for the neutral molecule.67 
Therefore, the ionization potential (excluding rela- 
tivistic correction), assuming that the pair correla- 
tion as well as the pair-pair correlation are constant 
from neutral molecule to the ion, and assuming correla- 
tion interaction can be ignored, is 

IP,i = C ( H , r +  + et ,+  - e l +  - C(H,r + €6’) - 
t‘ t‘ 

Hr+ + € 1  - et  - H i  - et  - t r  - Ftlttf (63) 
t 

t 

where the summation C indicates that t’ can assume 
any value from 1 to n excluding t .  The assumption 
that IP,, can be represented by - e t  is equivalent to the 
assumption, derived from eq 56, that a quantity 6, here 
defined, is zero. 

t 

t‘ 
0 = C ( H , , +  + e t +  - H p  - e,!) + 

Ht+ - Ht  - t l t  -F  t l t t ’  = 0 (64) 
t 

Since eq 64 has been derived using the ground-state 
function both for the neutral molecule and the ion, 
clearly only the correlation term remains. In the 
following we analyze the term 6 assuming that the wave 
function for the ion and the neutral molecule are ex- 
actly identical for all the orbitals with exception of the 
one where ionization takes place. This assumption is, 
therefore, equivalent to stating 

t 

t’ 
C(H,,+ + e t , +  - H I ,  - et , )  = 0 (65) 

However, a further assumption that the electronic 
distribution of the orbital from which the electron is 
ejected is unchanged, whether it is singly or doubly 
occupied, is rather difficult to accept in general; there- 
fore, one can hardly accept that H , +  - H ,  = 0. In  
addition, it is noted that (-7,) is, in general, a positive 
quantity (and so is -Ct1~rt16f1t). The integral H f +  
and H ,  are the sum of the kinetic and electronic-nuclear 
attraction energy for the orbital t .  The positive ion 
tends to shrink the electronic cloud (since the Coulomb 
field of the nuclear charge is unbalanced and has one 
positive charge in excess) : this is equivalent to increas- 
ing the kinetic energy and the electron-nuclear attrac- 
tion. Therefore, H,+ can be larger in absolute value 
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TABLE XXII 
PYRIDINE ION. GROSS POPULATION ANALYSIS (AI) 

2a1 
0.0 

-0.00001 
1.99708 
0.00242 
0.00052 - 0.00002 
0 .0  
0.0 
0.0001 
0.0 
0.0 
0.00001 
0.0 
0.00003 
0.0 
0.0 

- 0.00001 

381 
0.0 
0.0 
0.00052 

-0.00006 
1.99621 
0.00276 
0.00061 

- 0.00004 
0.0 
0.00001 

- 0.00001 
0.0 
0.00001 
0.0 

-0.00002 
0.0 

-0.oooo1 

4sr 
0.0 
0.0 
0.0 
0.0 
0.00062 - 0.00008 
1,99663 
0.00281 
0.0 

-0.00001 
o.oo002 
0.0  

-0.00002 
0.0 
0.0 
0.00002 
0.0 

581 
0.00211 
0.72094 
0.00106 
0.59702 
0.00033 
0.21120 
1. 00009 
0.06018 
0.02264 
0.00575 
0.00151 
0.16937 
0.02085 
0.12714 

.0.00008 
0.04342 
0.01644 

681 

0.00091 
0.27771 
o.oooo1 
0.00017 
0.00111 
0.62562 
0.00099 
0.53747 
0.00051 
0.04190 
0.03492 
0.06128 
0.11957 
0.00343 
0.22224 
0.01812 
0.05402 

781 
o.Oo041 
0.11380 
0.00042 
0.25920 
0.00013 
0.05873 
0.00063 
0.32182 
0.06650 
0.01974 
0.07214 
0.22066 
0.23236 - 0.00331 
0.20412 
0.43130 
0,00134 

8sr 
0.00005 
0.04062 
0.00002 
0.05324 
0.0 
0.02822 
0.00004 
0.05684 
0.15453 
0.13265 
0.10031 
0.29520 
0.32776 
0.10377 
0.25322 
0.19136 
0.26205 

9ar 
0.00012 
0.01701 
0.00016 
0.14802 
0.00020 
0.16693 
0.00014 
0.05103 
0.27337 
0.39209 
0.01596 
0.27277 
0.48072 
0.01807 
0.07797 
0.08451 
0.00092 

1081 
0.00005 
0.04929 
0.00005 
0.00451 
0.00007 
0.03481 
0.00001 
0.04480 
0.02594 
0,02689 
0.44465 
0.04621 
0.01381 
0.18788 
0.16619 
0.11839 
0.83647 

llsl 
0.00021 
0.28704 
o.ooO04 
0.02017 
0.00003 
0.00507 
0.0 
0.00055 
0.11214 
0.03193 
0.02336 - 0.00346 
0.00149 
1.19766 
0.11047 
0.18937 
0.02392 

Total 
1.99752 
1.51357 
1.99936 
1.08435 
1.99922 
1.13324 
1.99914 
1.07556 
0.65564 
0.65085 
0.69286 
1,06158 
1.19655 
1.63469 
1.03405 
1.07649 
1.19514 

Total 1.99999 2.00003 1.99998 1.99999 1.99997 1.99998 1.99999 1,99998 1.99999 2.oooO2 1.99999 21.99991 

TABLE XXIII 
PYRIDINE ION. GROSS POPULATION ANALYSIS (B,) 

Iba 
1.99686 
0.00249 
0.00057 

-0.00004 
0.00005 
0.0 
0.00008 - 0.00002 
0.0 
0.0 
0.0 
0.00002 

2br 

- 0.00005 
0.00057 

1.99672 
0.00271 
0.0 
0.00003 
0.0 
0.0 - 0.00001 
0.00005 
0.0 
0.0 

3br 
0.00133 
0.75512 
0.00125 
0.67537 
0.06292 
0.05660 
0.13062 - 0.00676 - 0.00587 
0.10998 
0.10169 
0.11776 

Total 2 * 00001 2 * 00002 2.00001 

than H,. Since H is a negative quantity we have from 
eq 64 and 65 that 

This is essentially the sum of a negative quantity (the 
first parentheses) and a positive quantity (the second 
parentheses). Whenever the E~ happens to nearly coin- 
cide with the experimental ionization potential, it  
simply indicates that the conditions of eq 65 and 66 are 
valid or that the terms of eq 66 are cancelled by the 
terms of eq 65. Clearly, the fulfillment of these con- 
ditions has very little to do with the ability of the 
Hartree-Fock approximation to reasonably represent 
our exact wave function. In addition, this analysis 
holds both for Hartree-Fock functions or for less ac- 
aurate self-consistent field functions. As a corollary to 
this analysis, we note that since H,+ and H, are quanti- 
ties very simple to obtain, once a Hartree-Fock func- 
tion is obtained (these are part of the standard output 
in our molecular program), then eq 66 is a useful start- 
ing point for obtaining quantitative information on the 
pair and pair-pair correlation energy, provided that the 
ionization potentials are known. 

4br 
0.00061 
0.33377 
0.00072 
0.39492 
0.09729 
0.11887 
0.37491 
0.002 18 - 0.00304 
0.27895 
0.24899 
0.15184 

5br 
0.0 
0.00025 
0.00001 
0.00992 
0.00621 
0.00427 
0.35506 
0.26870 
0.13037 
0.33627 
0.37266 
0.51627 

6ba 
0.0 
0.00202 
0 * 00001 
0.00132 
0.23498 
0.23796 
0.00194 
0.47298 
0.49994 
0.00180 
0.29503 
0.25200 

7bt 
0.0 
0.01249 
0.0 
0.01193 
0.26678 
0.27254 
0.14664 
0.45314 
0.58769 
0.23123 
0.01683 
0.00073 

Total 
1.99937 
1.10609 
1.99928 
1.09613 
0.66823 
0.69027 
1.00925 
1.19022 
1.20908 
0.95828 
1.03520 
1.03860 

2.00001 1.99999 1,99998 2.00000 14. OOOOI 

As a second corollary we might add that it is ques- 
tionable to expect agreement between computed 
orbital energies and exact ionization potentials for the 
cases where the electron is ejected from an inner orbital. 
In such cases eq 66 can seldom be justified. 

The comparison of the wave functions for the neutral 
ground state of pyridine and the positive ion, obtained 
by ionization of one T electron, is performed by analyz- 
ing the electronic population data. In Tables XXII, 
XXIII, and XXIV we report the gross charge popula- 
tion for the MO’s of AI and Bz and for the ?r MO’s, re- 
spectively. These tables are now compared with the 
corresponding one previously reported for the pyridine 
neutral molecule in its ground state (see Tables XVIII- 
XXI) . 

Comparison of the population analysis of the 11 
occupied MO’s of A-a symmetry indicates that there 
is little difference between the ion and the ground- 
state molecule, if we compare a single MO at a time. 
The la,  2a, and 3a are practically identical in the neu- 
tral molecule and in the ion; the 3al and 4a1 switch 
themselves between ion and ground state; namely, the 
3al of the ion corresponds to the 4al of the neutral 
molecule and the 4a1 of the ion corresponds to the 3al of 
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TABLE XXIV 
PYRIDINE ION. GROSS POPULATION ANALY61.5 FOR A ELECTRONSO 

Symmetry function 1 bi 2bi Isr 
P 0.41500 0.59524 . . .  
P+ 0.47160 0.56375 . . .  
P 0.76454 0.24148 1.00354 

P+ 0.76580 0.21812 0.50482 
P 0.56764 0.44064 0.99648 

W P J  

Cl(2P.) f C2(2PJ 

P 0.25284 0.72264 
Cd%) 

P +  0.24480 0.72795 . . .  

tron. Therefore, the apparent 1 : 1 correspondence in 
the individual MO’s of the ion and the molecule is mis- 
leading, because there is a large over-all charge re- 
arrangement. It is noted that we are studying the 
effect of the removal of one electron from a s orbital 
and we $nd over one-half electron displacement into the u 
electrons of A1 symmetry. 

Let us now analyze the B2 symmetry MO’s, lbz to 7bz. 
Again on the basis of a 1 : 1 comparison, one would con- 
clude that the variation in population distribution be- 
tween the pyridine ion and the neutral molecule is 
rather minimal. Let us compare the 14 electrons of B2 
symmetry in the ion with the 14 electrons of B2 sym-  
metry in the molecule. Again we find a substantial 

P refen to the neutral pyridine molecule ground-state elec- 
tronic gross charges; P +, to the positive ion. 

TABLE XXV 
GROSS CHARGE REARRANQEMENT OF TKE u ELECTRONS FOLLOWINQ s IONIZATIONSO 

AI symmetry MO’s BI symmetry MO’s 
X (8 P P+ A X ’ S  P P+ A 
x1 1.99758 1.99752 + O .  00006 X I S  1.99926 1.99937 + 0.0001 1 
X2 1.50896 1.51357 -0.00461 XI0 1.05926 1.10609 -0.04683 

1.99916 1.99928 +0.00012 x s  1.99924 1.99936 - 0.00008 XZO 
x4 1.03510 1.08435 - 0.04925 XZl 1.04672 1.09613 -0,04941 
x5 1.99912 1.99922 - 0.00010 x 2 2  0.78866 0.66823 +O.  12043 

4-0.11653 0.69027 x6 1.08476 1.13324 +0.04848 Xia 0.80680 
x7 1.99920 1.99914 +0.00006 x 2 4  1.04864 1.00925 +O. 03939 
X8 1.07222 1.07556 - 0.00334 xz5 1.09198 1.19022 - 0.09894 

X26 1.10730 1.20908 -0.10178 
XI0 0.75890 0.65095 +O.  10795 x27 1.01104 0.95828 + O .  05276 

-0.01814 XI1 0.77968 0.69286 4-0.08682 X28 1.01706 1.03520 
XI2 0.99512 1.06158 - 0.06646 x2 9 1.02422 1.03860 - 0.01438 

1.12038 1.19655 - 0.07617 
0.66076 1.63469 +O. 02607 Total 14.00010 14.00001 0.65882 

XIS 

XI4 
XI6 1.01274 1.03405 -0.02131 

1.06390 1.07649 - 0.01259 XI4 
XI7 1.14444 1.19514 - 0.05070 

Total 21.99996 21.99991 0.66627 

x g  0.76786 0.65564 +o. 11222 

a The first column reports the symmetry function; the second and third columns report the total electronic charge for the 11 MO’s of 
A1 symmetry for the symmetry function of the first column. The charges for the pyridine neutral molecule are in the column designated 
by P; those for the ion are in the column designated as P +. The fourth column is the difference in charge between P and P+. The 
remaining four columns of this table report equivalent data for the seven MO’s of BZ symmetry. The x1 to x17 refer to the symmetry- 
adapted function (in the same order as given in Table XXII) for the a1 MO’s. Thexls to x 2 0  refer to the symmetry adapted function (in 
the same order as given in Table XXIII) for the br MO’s. 

the neutral molecule. However, this switching is 
probably of little significance since the two MO’s are 
about degenerate in energy both in the neutral molecule 
and in the ion. Again, for the 5a1 (to the llall) in the 
ion there is little difference with the 5a1 (to the lla11) 
of the neutral molecule. Each MO has a nearly exact 
correspondent in both ion and neutral pyridine. Per- 
haps we should analyze not the individual MO’s but 
the composite group of 22 electrons of AI symmetry. 
This is done in columns 1 and 2 of Table XXV, where 
the number of figures reported is more than what is 
needed for the discussion of the physical phenomena, 
but the excessive number of figures is given for numeri- 
cal accuracy reasons. Clearly, both ion and neutral 
molecule have 22 electrons, and therefore the difference 
on the total charge in the 11 MO’s is zero. Of interest 
is the sum of the absolute deviations. This is given in 
the third columns and amounts to over one-half of an elec- 

charge rearrangement involving over one-half of an 
electron. 

The s-electron system has some variations in the B1 
MO’s. Namely, the l b  has about 0.06 electronic charge 
shifted from the carbons to the nitrogen by comparing 
the neutral molecule with the ion. The 2bl continues 
the process of lbl and shifts some more charge ( 4 . 0 3 )  
from the nitrogen to the carbons. It is interesting to  
note that the four ‘IT electrons of BI symmetry shift 
around about 0.22 electron. The 22 electrons in AI 
shift around about 0.66 electron, and 0.66 for the 14 
electrons in B2. Therefore, there is about 1.3 electrons 
out of 36 u electrons which are rearranged in the u group 
and 0.22 in the four s electrons of BI symmetry. How- 
ever, since there are 12 inner-core electrons in the u 
group and since some of the low-lying u orbitals undergo 
no rearrangement in going from neutral molecule to the 
ion, we conclude that the rearrangements in the u elec- 
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TABLE XXVI 

1.9975 
1.5136 
1.0092 
1.6347 
1.0353 

1.9994 
1,0952 
1.1259 
1.0346 
0.7743 

1.9992 
1.1147 
1.2028 
1.0575 
0.7516 

1,9991 
1.0756 
0.9583 
1.1951 
0.9727 

0.6619 

0.6706 

0.6929 

IS 
2s 
2PO 
2P* 

1s 
2s 
2Po 
2Pr 

1s 
2s 
2PO 
2Px 

1s 
2s 
2Po 
2P* 

1s 

1s 

1s 

PYRIDINE ION. 
N 

1.9975 1s 
1.5136 2s 
2.6439 2P 
1.0353 

CI (or Cd 
1.9994 Is 
1.0952 2s 

2P 2.1605 
0.7743 

4 (or C4) 
1.9992 1s 
1.1147 2s 

2P 2.2603 
0.7516 

C6 
1.9991 IS 
1.0756 2s 
2.1534 2P 
0.9727 

HI (or Hd 
0.6619 1s 

Ha (or HI) 
0,6706 1s 

H5 
0.6929 1s 

GROSS CHARQE SUMMARY 

trons are, in absolute value, larger than the rearrangement 
in the a electrons. If we add to the 0.22 a-electron re- 
arrangement one charge (the one which is ionized), then 
the a-charge rearrangement is nearly equal to the u 
rearrangement. 

This conclusion should caution against the use of the 
a-electron approximation, where one would like to as- 
sume equal u core and consider only the a electrons. 

Two comments should be added. The first concerns 
those quantum chemists who consider the population 
analysis a most questionable tool for understanding 
what the electrons are doing in molecules. Clearly there 
are drawbacks in the population analysis formulation, 
especially if one assumes a rigorous (or in this case, a 
puritanical) attitude in the use of quantum theory for 
understanding molecules. However, the rearrange- 
ments here described are not part of any expectation 
value as such, but do influence any expectation value. 
Therefore, it seems definitely worthwhile to present this 
type of data, even if not too rigorous. This comment is 
particularly true when we shall deal with larger and 
larger molecules. 

The second comment is a qualification on the values 
we have reported. As noted previously, this computa- 
tion does not represent the best possible SCF function, 
since we are working with a rather limited basis set. 
Therefore, the numerical conclusions about the u rear- 
rangement should be considered somewhat provisional. 

1.9975 
1.5136 
3.6792 

1.9994 
1.0952 
2.9348 

1.9992 
1.1147 
3.0119 

1.9991 
1.0756 
3.1261 

0.6619 

0.6706 

0.6929 

-0.1550 
-0.0353 
-0.1903 

-0.2551 

- 0.0294 
+ 0.2257 

- 0.3742 
+0.2484 
-0.1258 

-0.2081 
4-0.0273 
-0.1808 

0.3381 

0.3334 

0.3071 

Neutral 
-0.2159 
-0.0102 
-0.2262 

-0.1049 
-0.0048 
-0.1097 

-0.2228 
-0.0024 
- 0.2252 

-0.2269 

- 0.2024 
+O. 0245 

0.2217 

0.2171 

0.2203 

The total charges on the atoms in the pyridine ion 
and in the pyridine neutral molecule are given in Table 
XXVI where the rearrangement is given, not in terms 
of groups of electrons of a given symmetry, but in terms 
of atomic sites. In  the next to the last column we re- 
port the charge transfer, 6, for the ion. In  the last 
column we report the charge transfer, 6, for the neutral 
molecule. The nitrogen atom has accepted 0.19 elec- 
tron in the ion (0.15 of u type, 0.04 of a type). In  the 
neutral molecule the nitrogen accepts about the same 
change, 0.23 electron (0.21 of u type and 0.02 of 7~ type). 
The carbon atom C1 (or C2) is the nearest neighbor to 
the nitrogen. Here the behavior between ion and neu- 
tral molecule is quite different. In the ion molecule 
the carbon atom is about neutral (0.03 negative), but 
there is a two-my charge transfer of considerable in- 
tensity. The CI (or C2) carbon accepts 0.25 u electron 
and donates 0.22 T electron. The Ca carbon atom (or 
C,) again exhibits this two-way charge transfer. The 
C8 carbon atom is over-all 0.12 electron negative, but 
this excess charge is obtained by accepting 0.37 u elec- 
tron and donating 0.24 a electron. The carbon atom 
opposite to the nitrogen atom, C5, is negatively charged. 
It accepts 0.21 c electron and donates 0.03 a electron. 
The nitrogen and the carbon atoms are, therefore, all 
negatively charged in the pyridine ion. Comparison 
with the neutral molecule indicates that this is not suffi- 
cient to account for one electron ionized. The total 
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excess electronic charge on the ring atoms is 0.68 elec- 
tron in the ion; this should be compared with an excess 
of 1.10 electrons in the atoms of the ring for the neutral 
molecule. Therefore, the ionization of one T electron 
has decreased the excess charge of the ring atoms from 
1.10 electrons to 0.68 electron. In  other words, the 
ring atoms contribute only 0.42 of the electron which 
has been ionized. The remainder is offered by the 
hydrogen atoms. From Table XXVI the hydrogens 
are much more positively charged in the ion than in the 
molecule. 

In  the neutral molecule, there was no two-way charge 
transfer: to make the ring atoms negative, the hydro- 
gens supply u charge that is accepted by the ring atoms. 
However, in the ion one T electron is removed from the 
ring atoms. This loss is equilibrated by additional u- 
charge donation from the hydrogens, which offset partly 
the T-electron loss following ionization. This mechan- 
ism takes place mainly on C1, Cz, Ca, and Cq. The ni- 
trogen atom and C6 are rather insensitive to the ioniza- 
tion. This is not surprising since N and C5 are not in- 
cluded in the a2 M O  which is the one ionized. 

We shall first comment on the value of the ionization 
potential. The computed total energy for the positive 
ion is -245.19708 or 0.42486 au (or 11.46 eV) above the 
computed ground-state energy. These quantities cor- 
respond to the computed one-electron particle model 
contribution to the vertical ionization potential. 
Therefore, it ignores (a) the correlation effects and (b) 
the relativistic effects. The latter can be ignored as in- 
dicated in a previous section of this paper. The cor- 
relation contribution to the ionization potential is, 
however, substantial as previously discussed. From 
atomic data on the first-row atoms it is about 2eV per 
pair for p electrons.ss However, we have at present no 
sufficient data on the pair-pair correction in aromatic 
systems. We have, therefore, to conclude that the 
vertical ionization potential should be in the neighbor- 
hood of 11.46 + 2 = 13.46 e V .  With more computa- 
tions of ionized states, we shall probably be in a position 
to give a more accurate estimate of the correlation cor- 
rection. The experimental ionization potential is re- 
ported to be 9.266 eV. 

It is quite simple to reconcile the two seemingly con- 
tradictory values of the computed and experimental 
ionization potential. First, we have to realize that the 
0.66-electron rearrangement in the A1 symmetry NO’S 
(and equivalent in the Bz symmetry RIO’s) is mainly 
in the sense of shifting charges from the hydrogens to 
the carbons and from s-type orbitals to p-type orbitals. 
This will bring about an increase of correlation energy 
in the ion, which partially offsets the pair correlation 

~~ 

(68) The value of 2 eV is likely on the upper limit. It is noted tha t  
the same basis set was used for the ion and the neutral molecule. An 
accurately selected set would bring the computed energy difference of 
11.46 eV to a somewhat smaller value. 

TABLE XXVII 
MOLECULAR GEOMETRY FOR THE PYBAVNE MOLECULES~ 

2 U a! Y 

NI 0 . 0  2.588950 Hj - 3.993240 2.343280 
Np 0 . 0  - 2.588950 Hr 3.993240 2.343280 
Ci -2.209380 1.313370 Hs -3.993240 -2.343280 
Cf 2.209380 1.313370 H4 3.993240 -2.343280 
Cz -2.209380 - 1.313370 
C4 2.209380 - 1.313370 

dinate is 0. 
0 Distances are given in atomic units; the value of the z coor- 

energy in the T systems (let us indicate this quantity as 
el). In  addition, this SCF computation for the ion uses 
the same basis set we have selected for the neutral 
molecule. A more adequate set for the ion would have 
lowered the ion SCF total energy by a nonnegligible 
amount, e2. Finally, the charge shift from the hydro- 
gens to the carbon atoms will bring about some varia- 
tion in the equilibrium distance of the ion (let us in- 
dicate with e3 the energy lowering due to this effect). 
Therefore, the vertical ionization potential is - 13.46 
eV + el + e2 and the 0-0 ionization potential is - 13.46 + €1 + e2 + e3. We esbimate e3 2 > €1 with el in the 
neighborhood of 1 eV. Therefore, the experimental 
value of -9.3 eV for the ionization potential is in rea- 
sonable agreement with our computation and prelimi- 
nary analysis. 

From our discussion on the ionization potential and 
from our analysis of the differences in the electronic dis- 
tribution between the ion and the neutral molecule, it is 
clear that the quantity 0 given in eq 64 is different from 
zero. (It is noted that Ha, and H,,+ are nearly equal in 
the ion and in the neutral molecule: H a ,  = -9.799327 
au and H,,+ is larger by 0.0003 au). Therefore, the 
quantity 0 of eq 66 is certainly different from zero. I t  
is noted that the computed e,, for the neutral molecule is 
- 0.44725 au (or - 12.17 eV). Assuming again a 2-eV 
contribution to the ionization potential from correla- 
tion effects, there is, therefore, about 0.71 eVdue to the 
rearrangement effects. The rearrangement involves 
more than one full electron and i s  accomplished therefore 
rather inexpensively. This should caution us against 
equating near agreement of B and the experimental 
ionization potentials with the assumption of small elec- 
tronic rearrangement in the molecule. It is finally 
noted that the energy of about 1 eV (0.71 eV) needed to 
accomplish the rearrangement of about one electron is 
quite compatible with spectroscopic excitations (below 
the Rydberg excitation) where again we transfer (and 
therefore rearrange) one electron at the expense of a 
few electron volts, in general. 

VIII. PYRAZINE GROUND STATE 
In  Table XXVII we report the molecular geometry 

we have used in this computation. The molecule has 
been computed in the Czv symmetry, and we have 
chosen the principal axis of symmetry as the y axis. 
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TABLE XXVIII 
TOTAL ENEBQY AND ORBITAL ENERQIES FOR PYRAZINE 

(IN ATOMIC UNITS) 

Ai(#) M u )  Bi(*) Adz)  
- 15.69544 - 11.47649 - 0.64940 - 0.46176 
-15.69527 -11.47540 - 0.49355 
-11.47642 - 1.13257 
-11.47541 - 0.93097 - 1.37619 -0.75519 
- 1.27295 -0.68371 
-0.95711 -0.61071 
-0.77967 - 0.72282 - 0.53275 
-0.44125 
Total energy -261.55432 au 

As previously, the wave function is analyzed by con- 
sidering the orbital energies and the gross population 
charges on the individual atoms. The gross population 
for the al MO’s is given in Table XXIX: for the bs 
MO’s, in Table XXX: and for the r-electrons MO’s, 
in Table XXXI. 

The lal, 2a1, 3a1, 4a1, lbz, and 2b2 are core MO’s, 
which represent the 1s electrons for the nitrogen and for 
the carbon atoms. The remaining orbitals resemble 
those of the pyridine molecule. (The two molecules are 
isoelectronic : one nitrogen of pyrazine is replaced by a 
C-H group in pyridine.) Let us consider the MO’s of 
symmetry A1. In pyrazine, 5a1 is more stable than 5al 

la1 
1.9890 
0.0072 
0.0 

-0.0003 
0.0 
0.0 
0.0046 
0.0 
0.0 
0.0 

-0.0005 
0.0 
0.0 
0.0001 
0.0 
0.0 

2.0001 

261 
0.0046 
0.0 
0.0 
0.0 
0.0 

-0.0003 
1.9890 
0.0072 
0.0 
0.0 
0.0 

-0.0005 
0.0 
0.0 - 0.0001 
0.0 

1.9999 

TABLE XXIX 
PYRAZINE. G R O S ~  POPULATION ANALYSIS (AI) 
381 4a1 5ai 681 781 881 

0.0 0.0 0.0012 0.0017 0.0006 0.0001 
0.0 0.0 0.4118 0.5685 0.1752 0.0551 
1.0792 0.9182 0.0007 0.0004 0.0004 0 .0  
0.0015 0.0011 0.4002 0.1703 0.2494 0.0311 
0.8180 1.0794 0.0007 O.OOO4 0.0004 0 .0  
0.0013 0.0013 0.3998 0.1709 0.2494 0.0311 
0.0 0.0 0.0012 0.0018 0.0006 0.0001 
0.0 0.0 0.4109 0.5694 0.1752 0.0551 
0.0 0.0 0.0148 0.0123 0.0652 0.1769 
0.0 0.0 0.0148 0.0124 0.0652 0.1765 
0.0 0.0 0.0937 0.1119 0.1953 0.2636 
0.0 0.0 0.0937 0.1122 0.1952 0.2626 
0.0 0.0 0.0734 0.0427 -0.0031 0.1705 
0.0 0.0 0.0048 0.0913 0.3169 0.3041 
0.0 0.0 0.0050 0.0911 0.3174 0.3031 
0.0 0.0 0.0732 0.0428 -0,0031 0.1700 

2.0000 2.0000 1.9999 2.0001 2.0002 1.9999 

9ai 
0.0001 
0.0155 
0.0002 
0.1590 
0.0002 
0.1592 
0.0001 
0.0164 
0.3697 
0.3705 
0.3290 
0.3298 
0.0300 
0.0955 
0.0957 
0.0302 

2.0001 

TABLE XXX 
PYRAZINE. GROSS POPULATION ANALYSIS (Bz) 

2bi 3b: 4b2 5br 
0.9237 0.0013 0.0007 0.0 
0.0011 0.7061 0.3386 0.0 
1.0738 0.0013 0.0007 0.0 
0.0013 0.7061 0.3388 0.0 
0.0 0.0715 0.1118 0.0078 
0.0 0.0715 0.1118 0.0076 
0.0 0.1446 0.3624 0.3658 
0.0 -0.0073 -0.0009 0.2619 
0.0 -0.0073 -0.0009 0.2623 
0.0 0.1445 0.3624 0.3661 
0.0 0.0837 0.1874 0.3640 
0.0 0.0839 0.1871 0.3643 

1.9999 1.9999 1 * 9999 1.9998 

6b: 
0.0 

-0.0026 
0.0 

-0.0026 
0.2728 
0.2722 

-0.0016 
0.3636 
0.3626 

0.3686 
0.3685 

1.9999 

-0.0016 

loa1 
0. 0001 
0.1534 
0.0001 
0.0381 
0.0001 
0.0381 
0.0001 
0.1536 
0.0149 
0.0149 
0.0021 
0.0022 
0.7866 
0.0041 
0.0041 
0.7875 

2.0000 

7b: 
0.0 
0.0167 
0.0 
0.0167 
0.3151 
0.3159 
0.1854 
0.4781 
0.4786 
0.1854 
0.0040 
0.0041 

2.0000 

1181 
0.0001 
0.1060 
0.0 

-0.OOO6 
0.0 

-0.0006 
0.0001 
0.1059 
0.1127 
0.1128 

-0.0018 
-0.0019 

0.5815 
0.2022 
0.2026 
0.5811 

2.0001 

Total 
1.9975 
1.4927 
1 * 9992 
1.0498 

1.0502 
1.9976 
1.4927 
0.7665 
0.7671 
0.9933 
0.9933 
1.6816 
1.0190 
1.0189 
1.6817 

22.0003 

1 .wga 

Total 
1.9993 
1.0614 
1.9993 
1.0616 
0.7790 
0.7790 
1.0566 
1.0954 
1.0953 
1.0568 
1.0077 
1.0079 

13.9993 

The second axis in the molecular plane is the x axis, and 
the axis perpendicular to the molecular plane is the z 
axis. This choice of axes and symmetry has been made 

TABLE XXXI 
PYRAZINE. GROSS POPULATION ANALYSIS ( T )  At AND Bi 

Ibi 2b1 1a1 
Nl(2p.I 0.3402 0.6550 

in order to allow easy comparison with the pyrrole and c1(2p.) f c2(aP8) 0.6602 0.3446 1 .o001 
pyridine computations. The basis set used in this Cd2P.) f Cd2Pr) 0.6599 0.3452 0.9999 

Nt(2P‘) 0.3398 0.6552 
Total 2.0001 2.0000 2.0000 

computation is given in Tables VI11 and IX. 
The total energy and the orbital energies are given 

in Table XXVIII. The electronic configuration of 
pyrazine is given below. in pyridine by about eV. This added stability is 

due to the increased delocalization of the 5al MO, 
u electrons la1*2a1*3a1*~~~5a~*6a1’7a~*~~*9a1’102 which was concentrated around the nitrogen in pyridine 
u electrons lbi*2bia3b~*4b2*5b~*6b1’7b,’ and now is about equally distributed in the four carbon 
T electrons lbl*2bl*la2 and the two nitrogen atoms. The 6231 has the same 
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characteristics in being more delocalized and more 
stable than the 6a1 pyridine. In pyridine the l la l  MO 
is the lone-pair MO; in pyrazine, the loal and the l la,  
MO’s are the two lone-pair MO’s. In  pyridine the 
lone pair is delocalized on the neighboring carbon atom 
(1.41 electrons are on the N atom in pyridine and the 
remaining 0.59 is delocalized on the molecule). In  
pyrazine the lower lone pair (10al) has 0.94 electron on 
one nitrogen and 0.94 electron on the second nitrogen 
atom. The s character in the sp hybrid is relatively 
low (0.15 s character and 0.79 p character) if compared 
with diagonal hybridization. The second lone pair, 
the l lal ,  has 0.687 electron on each nitrogen. There- 
fore 1.374 electrons are on the nitrogens and 0.626 elec- 
tron is delocalized on the rest of the molecule (0.22 
electron on the hydrogens and 0.40 on the carbons). 
These results are of interest because they indicate that 
the two lone pairs in the diazine molecules are quite 
different in character, so that one cannot expect to de- 
scribe the two lone pairs by simple assumptions [such 
as assuming the two to be orthogonal and of the forms 
(1) hybrid(N1) + hybrid(Nz) and (2) hybrid(Nl) - 
hybrid(Nz)]. 

Here we have identified the loal and the l la l  as the 
lone-pair MO’s, because of their large 2p population 
on the nitrogen atom and of their high energy. It 
should be noted that this identification is open to ques- 
tion. The MO calculation, by its nature, should refer 
to “spectroscopic” lone pairs, rather than “chemical” 
lone pairs. The two chemical lone pairs should be of 
A1 and Bz symmetry. Therefore, we could possibly 
at,tempt to identify the lone pairs with the l l a  and 7bz. 
But then other questions remain unsolved; for ex- 
ample, we should analyze how the lone pair is deformed 
in the excited states and study its transformation prop- 
erties on a localized basis. We shall give no answer to 
this point but call the reader’s attention to the author’s 
ambiguous use of the term “lone” pair. 

We can summarize the population analysis results of 
the pyrazine molecule : the electronic configuration for 
the separated atoms is 

c ls*2s*2po’2p,1 

N 1 ~ ~ 2 ~ * 2 p u ~ 2 p x ~  

H 1st 

and for the atoms in pyrazine is 

IX. CONCLUSIONS 

The first conclusion is that we have reached the time 
for ab initio computations in aromatic molecules, with 
explicit consideration of all the electrons. This is pres- 
ently done in the SCF formalism. 

As a second conclusion, we have described a tech- 
nique whereby ab initio computations in molecules can 
include a large fraction of the correlation energy. 
Since the amount of labor needed to obtain such func- 
tions is not much greater than the labor required to ob- 
tain SCF functions, and since our present program has 
been extended so as to include the multiconfiguration 
SCF technique (the program has already been tested 
for few small molecules), then we conclude that the all- 
electron SCF-LCAO-MO era for aromatic molecules 
will be rather a short one and we can realistically look 
forward to much more accurate work than that here 
presented.‘j8 

The effect of having reached the present all-electron 
SCF stage for aromatic molecules has already proven 
most important. It has clearly demonstrated that the 
?r-electron approximation is untenable and that the u-r 
electrons interact so strongly that any approximation 
which will not give as much attention to the u electrons 
as is now given to the r electrons is on unsound grounds. 

The price for this reversal in our thinking is, however, 
very large. Much of the previous and present empirical 
work on large molecules and, in particular, on the aro- 
matic molecules of biological significance is a t  best 
open to question, not only on its quantitative validity 
but even on its qualitative validity. Finally, the 
economical price for the computations here reported is 
by far higher than the one required for more conven- 
tional work. This opens the question of readiness both 
financially and technically for many of the institutions 
of higher learning. 


